昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。
作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。
哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。
因此,问题基本上是:
给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)
我将感谢回答以下方面的问题:
大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?
这个问题实际上很有哲理。本质上,这是关于人们解决问题的能力(我们大脑的“湿件”)是否等同于算法所能完成的任务。
袜子分类的一个明显算法是:
Let N be the set of socks that are still unpaired, initially empty
for each sock s taken from the dryer
if s matches a sock t in N
remove t from N, bundle s and t together, and throw them in the basket
else
add s to N
现在这个问题的计算机科学都是关于步骤的
“如果s与N中的袜子t配对”。我们能多快“记住”到目前为止所看到的东西?“从N中删除t”和“将s添加到N”。跟踪我们目前所看到的情况有多贵?
人类将使用各种策略来实现这些目标。人类的记忆是关联的,类似于哈希表,其中存储值的特征集与相应的值本身配对。例如,“红色汽车”的概念映射到一个人能够记住的所有红色汽车。有完美记忆的人有完美的映射。大多数人(以及其他大多数人)在这方面都不完美。关联映射的容量有限。映射可能会在各种情况下(一杯啤酒太多)消失,被错误记录(“我认为她的名字是贝蒂,而不是内蒂”),或者即使我们观察到真相已经改变,也永远不会被覆盖(“爸爸的车”让人想起“橙色火鸟”,而我们实际上知道他用它换了红色的科迈罗)。
就袜子而言,完美回忆意味着看一只袜子总会产生它的同胞t的记忆,包括足够的信息(它在熨衣板上的位置),以便在恒定的时间内找到t。一个有照片记忆的人会在恒定的时间内完成1和2的任务。
记忆力不太好的人可能会根据自己能力范围内的特征使用一些常识等价类:尺寸(爸爸、妈妈、宝宝)、颜色(绿色、红色等)、图案(菱形、素色等)、风格(脚、膝盖高等)。这通常允许通过内存在恒定时间内定位类别,但随后需要通过类别“桶”进行线性搜索。
一个完全没有记忆或想象力的人(抱歉)只会把袜子放在一堆里,然后对整堆袜子进行线性搜索。
一个整洁的怪人可能会像某人建议的那样使用数字标签。这打开了完全排序的大门,允许人类使用与CPU完全相同的算法:二进制搜索、树、散列等。
因此,“最佳”算法取决于运行该算法的湿软件/硬件/软件的质量,以及我们是否愿意通过对其施加总订单来“欺骗”。当然,一个“最好”的元算法是雇佣世界上最好的袜子分类器:一个人或机器可以通过不断的时间查找、插入和删除,在1-1关联存储器中获取并快速存储大量的袜子属性集N。这样的人和机器都可以采购。如果你有一双袜子,你可以在O(N)时间内将所有袜子配对N双,这是最佳的。总订单标签允许您使用标准哈希来获得与人工或硬件计算机相同的结果。
对于p双袜子(n=2p只袜子),我实际上是这样做的:
从袜子堆里随便拿一只袜子。对于第一只袜子,或者如果之前选择的所有袜子都已配对,只需将袜子放入前面未配对袜子“阵列”的第一个“槽”中。如果有一个或多个选定的未配对袜子,请对照阵列中的所有未配对袜子检查当前袜子。在构建阵列时,可以将袜子分为普通类别或类型(白色/黑色、脚踝/圆领、运动型/连衣裙),并“向下搜索”以仅比较同类。如果你找到了一个可以接受的匹配,把两只袜子放在一起,然后把它们从阵列中去掉。如果没有,请将当前袜子放入阵列中第一个打开的插槽中。对每只袜子重复上述步骤。
这种方案的最坏情况是,每双袜子都不同,必须完全匹配,而且你挑选的第一双n/2袜子都不同。这是你的O(n2)场景,极不可能。如果袜子的独特类型的数量t小于袜子对的数量p=n/2,并且每种类型的袜子都足够相似(通常在穿着相关的术语中),使得该类型的任何袜子都可以与任何其他袜子配对,那么正如我上面所推断的,你必须与之进行比较的袜子的最大数量是t,之后你拉动的下一只袜子将与未配对的袜子之一相匹配。这种情况在普通袜子抽屉中比在最坏情况下更可能发生,并将最坏情况的复杂性降低到O(n*t),其中通常t<<n。
当我对袜子进行排序时,我会进行近似基数排序,将袜子放在同一颜色/图案类型的其他袜子附近。除非在我即将放下袜子的地方/附近,我能看到一对完全匹配的袜子,否则我会在那一刻取出这双袜子。
几乎所有其他算法(包括usr评分最高的答案)排序,然后删除配对。我发现,作为一个人,一次考虑的袜子数量最好尽量减少。
我通过以下方式做到这一点:
挑选一只与众不同的袜子(在袜子堆里最先映入我眼帘的东西)。从概念位置开始基数排序,根据与该位置的相似性从堆中拉出袜子。将新袜子放在当前袜子堆的附近,距离取决于它的不同程度。如果你发现自己将袜子放在另一只袜子的上面,因为它是相同的,请在那里形成一对,然后将它们取下。这意味着未来的比较需要更少的努力来找到正确的位置。
这利用了人类在O(1)时间内进行模糊匹配的能力,这在某种程度上相当于在计算设备上建立哈希图。
通过先穿上与众不同的袜子,你可以留出空间来“放大”那些不那么与众不同的特征。
在去除了浅色、条纹袜子和三双长袜之后,你可能最终会得到大致按磨损程度分类的白色袜子。
在某种程度上,袜子之间的差异很小,以至于其他人不会注意到差异,因此不需要进一步的匹配。
由于人脑的结构与现代CPU完全不同,所以这个问题毫无实际意义。
人类可以利用“找到匹配的对”这一事实来战胜CPU算法,这对于一个不太大的集合来说是一个操作。
我的算法:
spread_all_socks_on_flat_surface();
while (socks_left_on_a_surface()) {
// Thanks to human visual SIMD, this is one, quick operation.
pair = notice_any_matching_pair();
remove_socks_pair_from_surface(pair);
}
至少这是我在现实生活中使用的,我发现它非常有效。缺点是它需要一个平坦的表面,但通常很丰富。