大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。

但我很好奇,你是如何计算或近似你的算法的复杂性的?


当前回答

我不知道如何通过编程来解决这个问题,但人们做的第一件事是我们对算法的特定模式进行抽样,比如4n²+ 2n + 1我们有两个规则:

如果我们有一个项的和,增长率最大的项被保留,其他项被省略。 如果我们有几个因数的乘积,常数因数就省略了。

如果我们化简f(x),其中f(x)是所做操作数量的公式,(上文解释的4n²+ 2n + 1),我们得到大O值[在这种情况下是O(n²)]。但这必须考虑到程序中的拉格朗日插值,这可能很难实现。如果真正的大O值是O(2^n)我们可能有O(x^n)这样的东西,那么这个算法可能是不可编程的。但如果有人证明我错了,给我代码. . . .

其他回答

如果你的成本是一个多项式,只保留最高次项,而不保留它的乘数。例如:

(O (n / 2) + 1) * (n / 2)) = O (n2/4 = O (n / 2) + n2/4) = O (n2)

注意,这对无穷级数不成立。对于一般情况,没有单一的方法,但对于一些常见情况,适用以下不等式:

O(log N) < O(N) < O(N log N) < O(N2) < O(Nk) < O(en) < O(n!)

看到这里的答案,我想我们可以得出这样的结论:我们大多数人确实通过观察它和使用常识来近似算法的顺序,而不是像我们在大学里认为的那样用主方法来计算它。 说了这么多,我必须补充一点,即使教授也鼓励我们(后来)实际思考,而不是仅仅计算。

我还想补充一下如何对递归函数进行处理:

假设我们有这样一个函数(scheme code):

(define (fac n)
    (if (= n 0)
        1
            (* n (fac (- n 1)))))

递归地计算给定数字的阶乘。

第一步是尝试并确定函数体的性能特征,只是在这种情况下,在函数体中没有做任何特殊的事情,只是一个乘法(或返回值1)。

所以主体的性能是:O(1)(常数)。

接下来尝试确定递归调用的数量。在这种情况下,我们有n-1个递归调用。

所以递归调用的性能是:O(n-1)(阶为n,因为我们抛弃了无关紧要的部分)。

然后把这两个放在一起,你就得到了整个递归函数的性能:

1 * (n-1) = O(n)


Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example. Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.

小提示:大O符号是用来表示渐近复杂度的(也就是说,当问题的大小增长到无穷大时),它隐藏了一个常数。

这意味着在O(n)和O(n2)的算法之间,最快的并不总是第一个算法(尽管总是存在一个值n,这样对于大小为>n的问题,第一个算法是最快的)。

注意,隐藏常数很大程度上取决于实现!

此外,在某些情况下,运行时并不是输入大小为n的确定函数。以快速排序为例:对n个元素的数组进行排序所需的时间不是一个常数,而是取决于数组的初始配置。

有不同的时间复杂度:

最坏的情况(通常是最简单的,但并不总是很有意义) 一般情况下(通常很难弄清楚…) ...

一个很好的介绍是R. Sedgewick和P. Flajolet的《算法分析导论》。

正如你所说,过早的优化是万恶之源,(如果可能的话)在优化代码时真的应该总是使用分析。它甚至可以帮助您确定算法的复杂性。

经常被忽视的是算法的预期行为。它不会改变你的算法的大o,但它确实与“过早优化.. ..”的声明有关

你的算法的预期行为是——非常简单——你期望你的算法在你最有可能看到的数据上工作的速度有多快。

例如,如果你在一个列表中搜索一个值,它是O(n),但如果你知道你看到的大多数列表都有你的值在前面,你的算法的典型行为会更快。

为了真正确定它,你需要能够描述你的“输入空间”的概率分布(如果你需要对一个列表排序,这个列表已经被排序的频率是多少?有多少次是完全相反的?多长时间进行一次排序?)这并不总是可行的,但有时你知道。

我不知道如何通过编程来解决这个问题,但人们做的第一件事是我们对算法的特定模式进行抽样,比如4n²+ 2n + 1我们有两个规则:

如果我们有一个项的和,增长率最大的项被保留,其他项被省略。 如果我们有几个因数的乘积,常数因数就省略了。

如果我们化简f(x),其中f(x)是所做操作数量的公式,(上文解释的4n²+ 2n + 1),我们得到大O值[在这种情况下是O(n²)]。但这必须考虑到程序中的拉格朗日插值,这可能很难实现。如果真正的大O值是O(2^n)我们可能有O(x^n)这样的东西,那么这个算法可能是不可编程的。但如果有人证明我错了,给我代码. . . .