大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
除了使用主方法(或其专门化之一)之外,我还通过实验测试了我的算法。这不能证明达到了任何特定的复杂度等级,但它可以保证数学分析是适当的。为了保证这一点,我将代码覆盖工具与我的实验结合起来使用,以确保我使用了所有的案例。
作为一个非常简单的例子,假设你想要对. net框架的列表排序的速度进行完整性检查。你可以像下面这样写,然后在Excel中分析结果,以确保它们不超过n*log(n)曲线。
在这个例子中,我测量了比较的数量,但也要谨慎地检查每个样本量所需的实际时间。然而,您必须更加小心,因为您只是在度量算法,而不包括来自测试基础结构的工件。
int nCmp = 0;
System.Random rnd = new System.Random();
// measure the time required to sort a list of n integers
void DoTest(int n)
{
List<int> lst = new List<int>(n);
for( int i=0; i<n; i++ )
lst[i] = rnd.Next(0,1000);
// as we sort, keep track of the number of comparisons performed!
nCmp = 0;
lst.Sort( delegate( int a, int b ) { nCmp++; return (a<b)?-1:((a>b)?1:0)); }
System.Console.Writeline( "{0},{1}", n, nCmp );
}
// Perform measurement for a variety of sample sizes.
// It would be prudent to check multiple random samples of each size, but this is OK for a quick sanity check
for( int n = 0; n<1000; n++ )
DoTest(n);
其他回答
基本上90%的情况下都是分析循环。你有单、双、三重嵌套循环吗?你有O(n) O(n²)O(n³)的运行时间。
很少(除非你正在编写一个具有广泛基库的平台(例如,.NET BCL或c++的STL),你会遇到比查看循环(for语句,while, goto等…)更困难的事情。
经常被忽视的是算法的预期行为。它不会改变你的算法的大o,但它确实与“过早优化.. ..”的声明有关
你的算法的预期行为是——非常简单——你期望你的算法在你最有可能看到的数据上工作的速度有多快。
例如,如果你在一个列表中搜索一个值,它是O(n),但如果你知道你看到的大多数列表都有你的值在前面,你的算法的典型行为会更快。
为了真正确定它,你需要能够描述你的“输入空间”的概率分布(如果你需要对一个列表排序,这个列表已经被排序的频率是多少?有多少次是完全相反的?多长时间进行一次排序?)这并不总是可行的,但有时你知道。
好问题!
免责声明:这个答案包含虚假陈述,见下面的评论。
如果您正在使用大O,那么您正在谈论的是最坏的情况(后面将详细介绍它的含义)。此外,在平均情况下有大写的theta,在最佳情况下有大的omega。
你可以在这个网站上找到大O的正式定义:https://xlinux.nist.gov/dads/HTML/bigOnotation.html
f(n) = O(g(n))表示存在正常数c和k,使得当n≥k时0≤f(n)≤cg(n)。对于函数f, c和k的值必须是固定的,且不依赖于n。
好的,那么我们所说的"最佳情况"和"最坏情况"是什么意思呢?
这一点可以通过例子得到最清楚的说明。例如,如果我们使用线性搜索在一个排序数组中查找一个数字,那么最坏的情况是我们决定搜索数组的最后一个元素,因为这将花费与数组中有多少项一样多的步骤。最好的情况是当我们搜索第一个元素时,因为我们将在第一次检查之后完成。
The point of all these adjective-case complexities is that we're looking for a way to graph the amount of time a hypothetical program runs to completion in terms of the size of particular variables. However for many algorithms you can argue that there is not a single time for a particular size of input. Notice that this contradicts with the fundamental requirement of a function, any input should have no more than one output. So we come up with multiple functions to describe an algorithm's complexity. Now, even though searching an array of size n may take varying amounts of time depending on what you're looking for in the array and depending proportionally to n, we can create an informative description of the algorithm using best-case, average-case, and worst-case classes.
抱歉,这是如此糟糕的写作和缺乏太多的技术信息。但希望这能让时间复杂度类更容易理解。一旦你熟悉了这些,你就可以很简单地解析你的程序,寻找像for-loops这样依赖于数组大小的东西,并根据你的数据结构推理什么样的输入会导致简单的情况,什么样的输入会导致最坏的情况。
熟悉我使用的算法/数据结构和/或快速分析迭代嵌套。难点在于,当您调用一个库函数时,可能会多次调用—您常常不确定是否在不必要的时候调用了函数,或者它们正在使用什么实现。也许库函数应该有一个复杂度/效率度量,无论是大O还是其他度量,都可以在文档或智能感知中得到。
对于第一种情况,内部循环执行了n-i次,因此执行的总次数是i从0到n-1(因为小于,而不是小于或等于)的和。你得到最后n * (n + 1) / 2,所以O (n²/ 2)= O (n²)。
对于第二个循环,i在0到n之间。然后,当j严格大于n时执行内循环,这是不可能的。