大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
至于“如何计算”大O,这是计算复杂性理论的一部分。对于一些(许多)特殊的情况,您可能会使用一些简单的启发式方法(例如为嵌套循环乘以循环计数),特别是当您想要的只是任何上限估计时,并且您不介意它是否过于悲观——我猜这可能就是您的问题的内容。
如果你真的想回答任何算法的问题你能做的最好的就是应用这个理论。除了简单的“最坏情况”分析,我发现平摊分析在实践中非常有用。
其他回答
熟悉我使用的算法/数据结构和/或快速分析迭代嵌套。难点在于,当您调用一个库函数时,可能会多次调用—您常常不确定是否在不必要的时候调用了函数,或者它们正在使用什么实现。也许库函数应该有一个复杂度/效率度量,无论是大O还是其他度量,都可以在文档或智能感知中得到。
大O表示算法时间复杂度的上界。它通常与处理数据集(列表)一起使用,但也可以在其他地方使用。
下面是一些在C代码中如何使用它的例子。
假设我们有一个n个元素的数组
int array[n];
如果我们想要访问数组的第一个元素,这将是O(1)因为不管数组有多大,它总是需要相同的常数时间来获得第一项。
x = array[0];
如果我们想在列表中找到一个数字:
for(int i = 0; i < n; i++){
if(array[i] == numToFind){ return i; }
}
这是O(n)因为我们最多要遍历整个列表才能找到我们要的数。大O仍然是O(n),即使我们可能在第一次尝试中找到我们的数字并运行一次循环,因为大O描述了算法的上界(omega是下界,theta是紧界)。
当我们讲到嵌套循环时:
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
array[j] += 2;
}
}
这是O(n²)因为对于外层循环的每一次循环(O(n))我们都必须再次遍历整个列表,所以n乘以后只剩下n²。
这仅仅是触及表面,但当你分析更复杂的算法时,涉及证明的复杂数学就会发挥作用。希望这至少能让你熟悉基本知识。
不要忘记考虑空间的复杂性,如果内存资源有限,这也是一个值得关注的问题。例如,你可能听到有人想要一个常数空间算法,这基本上是说算法所占用的空间量不依赖于代码中的任何因素。
有时,复杂性可能来自于某个东西被调用了多少次,循环执行的频率,内存分配的频率,等等,这是回答这个问题的另一部分。
最后,大O可以用于最坏情况、最佳情况和摊销情况,其中通常用最坏情况来描述算法可能有多糟糕。
小提示:大O符号是用来表示渐近复杂度的(也就是说,当问题的大小增长到无穷大时),它隐藏了一个常数。
这意味着在O(n)和O(n2)的算法之间,最快的并不总是第一个算法(尽管总是存在一个值n,这样对于大小为>n的问题,第一个算法是最快的)。
注意,隐藏常数很大程度上取决于实现!
此外,在某些情况下,运行时并不是输入大小为n的确定函数。以快速排序为例:对n个元素的数组进行排序所需的时间不是一个常数,而是取决于数组的初始配置。
有不同的时间复杂度:
最坏的情况(通常是最简单的,但并不总是很有意义) 一般情况下(通常很难弄清楚…) ...
一个很好的介绍是R. Sedgewick和P. Flajolet的《算法分析导论》。
正如你所说,过早的优化是万恶之源,(如果可能的话)在优化代码时真的应该总是使用分析。它甚至可以帮助您确定算法的复杂性。
我想从另一个角度来解释Big-O。
Big-O只是用来比较程序的复杂性,也就是当输入增加时它们的增长速度有多快,而不是花在执行操作上的确切时间。
恕我直言,在大o公式中,你最好不要使用更复杂的方程(你可以坚持使用下图中的方程)。然而,你仍然可以使用其他更精确的公式(如3^n, n^3,…),但有时会误导!所以还是尽量简单为好。
我想再次强调,这里我们不想得到一个精确的算法公式。我们只想展示当输入增加时它是如何增长的并在这方面与其他算法进行比较。否则,您最好使用不同的方法,如基准测试。