大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
看到这里的答案,我想我们可以得出这样的结论:我们大多数人确实通过观察它和使用常识来近似算法的顺序,而不是像我们在大学里认为的那样用主方法来计算它。 说了这么多,我必须补充一点,即使教授也鼓励我们(后来)实际思考,而不是仅仅计算。
我还想补充一下如何对递归函数进行处理:
假设我们有这样一个函数(scheme code):
(define (fac n)
(if (= n 0)
1
(* n (fac (- n 1)))))
递归地计算给定数字的阶乘。
第一步是尝试并确定函数体的性能特征,只是在这种情况下,在函数体中没有做任何特殊的事情,只是一个乘法(或返回值1)。
所以主体的性能是:O(1)(常数)。
接下来尝试确定递归调用的数量。在这种情况下,我们有n-1个递归调用。
所以递归调用的性能是:O(n-1)(阶为n,因为我们抛弃了无关紧要的部分)。
然后把这两个放在一起,你就得到了整个递归函数的性能:
1 * (n-1) = O(n)
Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example. Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.
其他回答
熟悉我使用的算法/数据结构和/或快速分析迭代嵌套。难点在于,当您调用一个库函数时,可能会多次调用—您常常不确定是否在不必要的时候调用了函数,或者它们正在使用什么实现。也许库函数应该有一个复杂度/效率度量,无论是大O还是其他度量,都可以在文档或智能感知中得到。
大O符号很有用,因为它很容易使用,并且隐藏了不必要的复杂性和细节(对于一些不必要的定义)。求解分治算法复杂性的一种好方法是树法。假设你有一个带有中值过程的快速排序版本,所以你每次都将数组分割成完美平衡的子数组。
现在,构建一个与所使用的所有数组对应的树。根结点有原始数组,根结点有两个子数组。重复此步骤,直到底部有单个元素数组。
由于我们可以在O(n)时间内找到中位数,并在O(n)时间内将数组分成两部分,因此在每个节点上所做的功为O(k),其中k是数组的大小。树的每一层都包含(最多)整个数组,所以每层的功是O(n)(子数组的大小加起来是n,因为每层有O(k),我们可以把它加起来)。树中只有log(n)层,因为每次我们将输入减半。
因此,我们可以将功的上限设为O(n*log(n))。
然而,大O隐藏着一些我们有时不能忽视的细节。考虑计算斐波那契数列
a=0;
b=1;
for (i = 0; i <n; i++) {
tmp = b;
b = a + b;
a = tmp;
}
假设a和b在Java中是biginteger或者其他可以处理任意大数字的东西。大多数人会毫不犹豫地说这是一个O(n)算法。理由是,在for循环中有n次迭代,而O(1)工作在循环的一侧。
但是斐波那契数列很大,第n个斐波那契数列是n的指数级,所以仅仅是存储它就需要n个字节。对大整数执行加法将花费O(n)个工作量。所以在这个过程中所做的总功是
一加二加三……+ n = n(n-1)/2 = O(n)
所以这个算法在二次时间内运行!
至于“如何计算”大O,这是计算复杂性理论的一部分。对于一些(许多)特殊的情况,您可能会使用一些简单的启发式方法(例如为嵌套循环乘以循环计数),特别是当您想要的只是任何上限估计时,并且您不介意它是否过于悲观——我猜这可能就是您的问题的内容。
如果你真的想回答任何算法的问题你能做的最好的就是应用这个理论。除了简单的“最坏情况”分析,我发现平摊分析在实践中非常有用。
看到这里的答案,我想我们可以得出这样的结论:我们大多数人确实通过观察它和使用常识来近似算法的顺序,而不是像我们在大学里认为的那样用主方法来计算它。 说了这么多,我必须补充一点,即使教授也鼓励我们(后来)实际思考,而不是仅仅计算。
我还想补充一下如何对递归函数进行处理:
假设我们有这样一个函数(scheme code):
(define (fac n)
(if (= n 0)
1
(* n (fac (- n 1)))))
递归地计算给定数字的阶乘。
第一步是尝试并确定函数体的性能特征,只是在这种情况下,在函数体中没有做任何特殊的事情,只是一个乘法(或返回值1)。
所以主体的性能是:O(1)(常数)。
接下来尝试确定递归调用的数量。在这种情况下,我们有n-1个递归调用。
所以递归调用的性能是:O(n-1)(阶为n,因为我们抛弃了无关紧要的部分)。
然后把这两个放在一起,你就得到了整个递归函数的性能:
1 * (n-1) = O(n)
Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example. Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.
虽然知道如何计算出特定问题的大O时间是有用的,但了解一些一般情况可以在很大程度上帮助您在算法中做出决策。
以下是一些最常见的案例,摘自http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:
O(1) -确定一个数字是偶数还是奇数;使用常量大小的查找表或哈希表
O(logn) -用二分搜索在排序数组中查找一个项
O(n) -在未排序的列表中查找一个项;两个n位数相加
O(n2) -用一个简单的算法乘以两个n位数字;添加两个n×n矩阵;冒泡排序或插入排序
O(n3) -用简单的算法乘以两个n×n矩阵
O(cn) -使用动态规划找到旅行商问题的(精确)解;使用蛮力判断两个逻辑语句是否等效
O(n!) -通过暴力搜索解决旅行推销员问题
O(nn) -通常用来代替O(n!)来推导更简单的渐近复杂度公式