大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。

但我很好奇,你是如何计算或近似你的算法的复杂性的?


当前回答

虽然知道如何计算出特定问题的大O时间是有用的,但了解一些一般情况可以在很大程度上帮助您在算法中做出决策。

以下是一些最常见的案例,摘自http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:

O(1) -确定一个数字是偶数还是奇数;使用常量大小的查找表或哈希表

O(logn) -用二分搜索在排序数组中查找一个项

O(n) -在未排序的列表中查找一个项;两个n位数相加

O(n2) -用一个简单的算法乘以两个n位数字;添加两个n×n矩阵;冒泡排序或插入排序

O(n3) -用简单的算法乘以两个n×n矩阵

O(cn) -使用动态规划找到旅行商问题的(精确)解;使用蛮力判断两个逻辑语句是否等效

O(n!) -通过暴力搜索解决旅行推销员问题

O(nn) -通常用来代替O(n!)来推导更简单的渐近复杂度公式

其他回答

看到这里的答案,我想我们可以得出这样的结论:我们大多数人确实通过观察它和使用常识来近似算法的顺序,而不是像我们在大学里认为的那样用主方法来计算它。 说了这么多,我必须补充一点,即使教授也鼓励我们(后来)实际思考,而不是仅仅计算。

我还想补充一下如何对递归函数进行处理:

假设我们有这样一个函数(scheme code):

(define (fac n)
    (if (= n 0)
        1
            (* n (fac (- n 1)))))

递归地计算给定数字的阶乘。

第一步是尝试并确定函数体的性能特征,只是在这种情况下,在函数体中没有做任何特殊的事情,只是一个乘法(或返回值1)。

所以主体的性能是:O(1)(常数)。

接下来尝试确定递归调用的数量。在这种情况下,我们有n-1个递归调用。

所以递归调用的性能是:O(n-1)(阶为n,因为我们抛弃了无关紧要的部分)。

然后把这两个放在一起,你就得到了整个递归函数的性能:

1 * (n-1) = O(n)


Peter, to answer your raised issues; the method I describe here actually handles this quite well. But keep in mind that this is still an approximation and not a full mathematically correct answer. The method described here is also one of the methods we were taught at university, and if I remember correctly was used for far more advanced algorithms than the factorial I used in this example. Of course it all depends on how well you can estimate the running time of the body of the function and the number of recursive calls, but that is just as true for the other methods.

至于“如何计算”大O,这是计算复杂性理论的一部分。对于一些(许多)特殊的情况,您可能会使用一些简单的启发式方法(例如为嵌套循环乘以循环计数),特别是当您想要的只是任何上限估计时,并且您不介意它是否过于悲观——我猜这可能就是您的问题的内容。

如果你真的想回答任何算法的问题你能做的最好的就是应用这个理论。除了简单的“最坏情况”分析,我发现平摊分析在实践中非常有用。

如果你的成本是一个多项式,只保留最高次项,而不保留它的乘数。例如:

(O (n / 2) + 1) * (n / 2)) = O (n2/4 = O (n / 2) + n2/4) = O (n2)

注意,这对无穷级数不成立。对于一般情况,没有单一的方法,但对于一些常见情况,适用以下不等式:

O(log N) < O(N) < O(N log N) < O(N2) < O(Nk) < O(en) < O(n!)

我将尽最大努力在这里简单地解释它,但请注意,这个主题需要我的学生几个月才能最终掌握。你可以在《Java中的数据结构和算法》一书的第2章中找到更多信息。


没有机械程序可以用来获得BigOh。

作为“烹饪书”,要从一段代码中获得BigOh,首先需要意识到您正在创建一个数学公式来计算给定一定大小的输入执行了多少步计算。

目的很简单:从理论的角度比较算法,而不需要执行代码。步数越少,算法越快。

例如,假设你有这样一段代码:

int sum(int* data, int N) {
    int result = 0;               // 1

    for (int i = 0; i < N; i++) { // 2
        result += data[i];        // 3
    }

    return result;                // 4
}

这个函数返回数组中所有元素的和,我们想创建一个公式来计算该函数的计算复杂度:

Number_Of_Steps = f(N)

我们有f(N),一个计算步数的函数。函数的输入是要处理的结构的大小。这意味着该函数被调用,如:

Number_Of_Steps = f(data.length)

参数N接受数据。长度值。现在我们需要函数f()的实际定义。这是从源代码中完成的,其中每个感兴趣的行编号从1到4。

有很多方法来计算BigOh。从这一点开始,我们将假设每个不依赖于输入数据大小的句子都需要常数C个计算步骤。

我们将添加函数的步数,局部变量声明和return语句都不依赖于数据数组的大小。

这意味着第1行和第4行每一行都要走C步,函数是这样的:

f(N) = C + ??? + C

下一部分是定义for语句的值。请记住,我们正在计算计算步骤的数量,这意味着for语句体被执行N次。这就相当于把C加N次

f(N) = C + (C + C + ... + C) + C = C + N * C + C

没有机械规则来计算for语句体执行了多少次,您需要通过查看代码的操作来计算。为了简化计算,我们忽略了for语句的变量初始化、条件和增量部分。

为了得到实际的BigOh,我们需要函数的渐近分析。大致是这样做的:

去掉所有常数C。 由f()得到多项式的标准形式。 对多项式的项进行除法,并按增长率对它们排序。 保留N趋于无穷时变大的那一个。

f()有两项:

f(N) = 2 * C * N ^ 0 + 1 * C * N ^ 1

去掉所有C常数和冗余部分:

f(N) = 1 + N ^ 1

由于最后一项是当f()接近无穷大时变大的项(考虑极限),这是BigOh参数,sum()函数的BigOh为:

O(N)

有一些技巧可以解决一些棘手的问题:尽可能使用求和。

作为一个例子,这段代码可以很容易地使用求和来求解:

for (i = 0; i < 2*n; i += 2) {  // 1
    for (j=n; j > i; j--) {     // 2
        foo();                  // 3
    }
}

首先需要询问的是foo()的执行顺序。虽然通常是O(1),但你需要问你的教授。O(1)表示(几乎,大部分)常数C,与N大小无关。

第一句中的for语句很复杂。当索引结束于2 * N时,增量为2。这意味着第一个for只执行了N步,我们需要将计数除以2。

f(N) = Summation(i from 1 to 2 * N / 2)( ... ) = 
     = Summation(i from 1 to N)( ... )

第二句话更棘手,因为它取决于i的值。看一下:索引i取的值:0,2,4,6,8,…, 2 * N,第二个用于执行:N乘以第一个,N - 2是第二个,N - 4是第三个……直到N / 2阶段,在这个阶段,第二个for语句永远不会被执行。

在公式上,这意味着:

f(N) = Summation(i from 1 to N)( Summation(j = ???)(  ) )

同样,我们在计算步数。根据定义,每个求和都应该从1开始,以大于等于1的数结束。

f(N) = Summation(i from 1 to N)( Summation(j = 1 to (N - (i - 1) * 2)( C ) )

(我们假设foo()是O(1),并采取C步。)

这里有一个问题:当i取值N / 2 + 1向上时,内部求和以负数结束!这是不可能的,也是错误的。我们需要把和式分成两部分,当i取N / 2 + 1时是关键点。

f(N) = Summation(i from 1 to N / 2)( Summation(j = 1 to (N - (i - 1) * 2)) * ( C ) ) + Summation(i from 1 to N / 2) * ( C )

因为关键时刻i > N / 2,内部的for不会被执行,我们假设它的主体上有一个恒定的C执行复杂度。

现在可以使用一些恒等规则来简化求和:

求和(w从1到N)(C) = N * C 求和(w from 1 to N)(A (+/-) B) =求和(w from 1 to N)(A)(+/-)求和(w from 1 to N)(B) 求和(w从1到N)(w * C) = C *求和(w从1到N)(w) (C是一个常数,与w无关) 求和(w从1到N)(w) = (N * (N + 1)) / 2

应用一些代数运算:

f(N) = Summation(i from 1 to N / 2)( (N - (i - 1) * 2) * ( C ) ) + (N / 2)( C )

f(N) = C * Summation(i from 1 to N / 2)( (N - (i - 1) * 2)) + (N / 2)( C )

f(N) = C * (Summation(i from 1 to N / 2)( N ) - Summation(i from 1 to N / 2)( (i - 1) * 2)) + (N / 2)( C )

f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2)( i - 1 )) + (N / 2)( C )

=> Summation(i from 1 to N / 2)( i - 1 ) = Summation(i from 1 to N / 2 - 1)( i )

f(N) = C * (( N ^ 2 / 2 ) - 2 * Summation(i from 1 to N / 2 - 1)( i )) + (N / 2)( C )

f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N / 2 - 1) * (N / 2 - 1 + 1) / 2) ) + (N / 2)( C )

=> (N / 2 - 1) * (N / 2 - 1 + 1) / 2 = 

   (N / 2 - 1) * (N / 2) / 2 = 

   ((N ^ 2 / 4) - (N / 2)) / 2 = 

   (N ^ 2 / 8) - (N / 4)

f(N) = C * (( N ^ 2 / 2 ) - 2 * ( (N ^ 2 / 8) - (N / 4) )) + (N / 2)( C )

f(N) = C * (( N ^ 2 / 2 ) - ( (N ^ 2 / 4) - (N / 2) )) + (N / 2)( C )

f(N) = C * (( N ^ 2 / 2 ) - (N ^ 2 / 4) + (N / 2)) + (N / 2)( C )

f(N) = C * ( N ^ 2 / 4 ) + C * (N / 2) + C * (N / 2)

f(N) = C * ( N ^ 2 / 4 ) + 2 * C * (N / 2)

f(N) = C * ( N ^ 2 / 4 ) + C * N

f(N) = C * 1/4 * N ^ 2 + C * N

BigOh是:

O(N²)

首先,公认的答案是试图解释漂亮的花哨的东西, 但我认为,故意让Big-Oh复杂化并不是解决办法, 这是程序员(或者至少是像我这样的人)寻找的。

Big Oh(简而言之)

function f(text) {
  var n = text.length;
  for (var i = 0; i < n; i++) {
    f(text.slice(0, n-1))
  }
  // ... other JS logic here, which we can ignore ...
}

上面的大写哦是f(n) = O(n!)其中n表示输入集中的条目数, f表示每一项所做的操作。


Big-Oh符号是算法复杂度的渐近上界。 在编程中:假设的最坏情况所花费的时间, 或假设逻辑的最大重复计数,为输入的大小。

计算

记住(从上面的意思);我们只需要受N(输入大小)影响的最坏情况时间和/或最大重复次数, 然后再看一下(公认答案的)例子:

for (i = 0; i < 2*n; i += 2) {  // line 123
    for (j=n; j > i; j--) {     // line 124
        foo();                  // line 125
    }
}

Begin with this search-pattern: Find first line that N caused repeat behavior, Or caused increase of logic executed, But constant or not, ignore anything before that line. Seems line hundred-twenty-three is what we are searching ;-) On first sight, line seems to have 2*n max-looping. But looking again, we see i += 2 (and that half is skipped). So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet. Repeat search till method's end, and find next line matching our search-pattern, here that's line 124 Which is tricky, because strange condition, and reverse looping. But after remembering that we just need to consider maximum repeat count (or worst-case time taken). It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so: Add n to previous write down's end, but like "( n " instead of "+ n" (as this is inside previous loop), and close parenthesis only if we find something outside of previous loop.

搜索完成了!为什么?因为第125行(或之后的任何行)与我们的搜索模式不匹配。 现在我们可以关闭任何圆括号(在我们的记录中左开),结果如下:

f(n) = O( n( n ) )

试着进一步缩短“n(n)”部分,比如:

N (N) = N * N = n2 最后,用Big Oh符号来包装它,就像O(n2)或O(n²)一样,没有格式。