大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
对于第一种情况,内部循环执行了n-i次,因此执行的总次数是i从0到n-1(因为小于,而不是小于或等于)的和。你得到最后n * (n + 1) / 2,所以O (n²/ 2)= O (n²)。
对于第二个循环,i在0到n之间。然后,当j严格大于n时执行内循环,这是不可能的。
其他回答
对于代码A,外层循环将执行n+1次,“1”时间表示检查i是否仍然满足要求的过程。内循环运行n次,n-2次....因此,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²)。
对于代码B,虽然内部循环不会介入并执行foo(),但内部循环将执行n次,这取决于外部循环的执行时间,即O(n)
熟悉我使用的算法/数据结构和/或快速分析迭代嵌套。难点在于,当您调用一个库函数时,可能会多次调用—您常常不确定是否在不必要的时候调用了函数,或者它们正在使用什么实现。也许库函数应该有一个复杂度/效率度量,无论是大O还是其他度量,都可以在文档或智能感知中得到。
小提示:大O符号是用来表示渐近复杂度的(也就是说,当问题的大小增长到无穷大时),它隐藏了一个常数。
这意味着在O(n)和O(n2)的算法之间,最快的并不总是第一个算法(尽管总是存在一个值n,这样对于大小为>n的问题,第一个算法是最快的)。
注意,隐藏常数很大程度上取决于实现!
此外,在某些情况下,运行时并不是输入大小为n的确定函数。以快速排序为例:对n个元素的数组进行排序所需的时间不是一个常数,而是取决于数组的初始配置。
有不同的时间复杂度:
最坏的情况(通常是最简单的,但并不总是很有意义) 一般情况下(通常很难弄清楚…) ...
一个很好的介绍是R. Sedgewick和P. Flajolet的《算法分析导论》。
正如你所说,过早的优化是万恶之源,(如果可能的话)在优化代码时真的应该总是使用分析。它甚至可以帮助您确定算法的复杂性。
首先,公认的答案是试图解释漂亮的花哨的东西, 但我认为,故意让Big-Oh复杂化并不是解决办法, 这是程序员(或者至少是像我这样的人)寻找的。
Big Oh(简而言之)
function f(text) {
var n = text.length;
for (var i = 0; i < n; i++) {
f(text.slice(0, n-1))
}
// ... other JS logic here, which we can ignore ...
}
上面的大写哦是f(n) = O(n!)其中n表示输入集中的条目数, f表示每一项所做的操作。
Big-Oh符号是算法复杂度的渐近上界。 在编程中:假设的最坏情况所花费的时间, 或假设逻辑的最大重复计数,为输入的大小。
计算
记住(从上面的意思);我们只需要受N(输入大小)影响的最坏情况时间和/或最大重复次数, 然后再看一下(公认答案的)例子:
for (i = 0; i < 2*n; i += 2) { // line 123
for (j=n; j > i; j--) { // line 124
foo(); // line 125
}
}
Begin with this search-pattern: Find first line that N caused repeat behavior, Or caused increase of logic executed, But constant or not, ignore anything before that line. Seems line hundred-twenty-three is what we are searching ;-) On first sight, line seems to have 2*n max-looping. But looking again, we see i += 2 (and that half is skipped). So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet. Repeat search till method's end, and find next line matching our search-pattern, here that's line 124 Which is tricky, because strange condition, and reverse looping. But after remembering that we just need to consider maximum repeat count (or worst-case time taken). It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so: Add n to previous write down's end, but like "( n " instead of "+ n" (as this is inside previous loop), and close parenthesis only if we find something outside of previous loop.
搜索完成了!为什么?因为第125行(或之后的任何行)与我们的搜索模式不匹配。 现在我们可以关闭任何圆括号(在我们的记录中左开),结果如下:
f(n) = O( n( n ) )
试着进一步缩短“n(n)”部分,比如:
N (N) = N * N = n2 最后,用Big Oh符号来包装它,就像O(n2)或O(n²)一样,没有格式。
将算法分解成你知道的大O符号,并通过大O运算符组合。这是我知道的唯一办法。
欲了解更多信息,请查看有关该主题的维基百科页面。