大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
如果您希望根据经验而不是通过分析代码来估计代码的顺序,您可以插入一系列不断增加的n值,并为代码计时。在对数刻度上绘制你的时间。如果代码是O(x^n),值应该落在斜率为n的直线上。
这比只研究代码有几个优点。首先,您可以看到您是否在运行时接近其渐近顺序的范围内。此外,您可能会发现一些您认为是O(x)阶的代码实际上是O(x^2)阶的代码,例如,因为花在库调用上的时间。
其他回答
对于代码A,外层循环将执行n+1次,“1”时间表示检查i是否仍然满足要求的过程。内循环运行n次,n-2次....因此,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²)。
对于代码B,虽然内部循环不会介入并执行foo(),但内部循环将执行n次,这取决于外部循环的执行时间,即O(n)
经常被忽视的是算法的预期行为。它不会改变你的算法的大o,但它确实与“过早优化.. ..”的声明有关
你的算法的预期行为是——非常简单——你期望你的算法在你最有可能看到的数据上工作的速度有多快。
例如,如果你在一个列表中搜索一个值,它是O(n),但如果你知道你看到的大多数列表都有你的值在前面,你的算法的典型行为会更快。
为了真正确定它,你需要能够描述你的“输入空间”的概率分布(如果你需要对一个列表排序,这个列表已经被排序的频率是多少?有多少次是完全相反的?多长时间进行一次排序?)这并不总是可行的,但有时你知道。
大O表示算法时间复杂度的上界。它通常与处理数据集(列表)一起使用,但也可以在其他地方使用。
下面是一些在C代码中如何使用它的例子。
假设我们有一个n个元素的数组
int array[n];
如果我们想要访问数组的第一个元素,这将是O(1)因为不管数组有多大,它总是需要相同的常数时间来获得第一项。
x = array[0];
如果我们想在列表中找到一个数字:
for(int i = 0; i < n; i++){
if(array[i] == numToFind){ return i; }
}
这是O(n)因为我们最多要遍历整个列表才能找到我们要的数。大O仍然是O(n),即使我们可能在第一次尝试中找到我们的数字并运行一次循环,因为大O描述了算法的上界(omega是下界,theta是紧界)。
当我们讲到嵌套循环时:
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
array[j] += 2;
}
}
这是O(n²)因为对于外层循环的每一次循环(O(n))我们都必须再次遍历整个列表,所以n乘以后只剩下n²。
这仅仅是触及表面,但当你分析更复杂的算法时,涉及证明的复杂数学就会发挥作用。希望这至少能让你熟悉基本知识。
我不知道如何通过编程来解决这个问题,但人们做的第一件事是我们对算法的特定模式进行抽样,比如4n²+ 2n + 1我们有两个规则:
如果我们有一个项的和,增长率最大的项被保留,其他项被省略。 如果我们有几个因数的乘积,常数因数就省略了。
如果我们化简f(x),其中f(x)是所做操作数量的公式,(上文解释的4n²+ 2n + 1),我们得到大O值[在这种情况下是O(n²)]。但这必须考虑到程序中的拉格朗日插值,这可能很难实现。如果真正的大O值是O(2^n)我们可能有O(x^n)这样的东西,那么这个算法可能是不可编程的。但如果有人证明我错了,给我代码. . . .
首先,公认的答案是试图解释漂亮的花哨的东西, 但我认为,故意让Big-Oh复杂化并不是解决办法, 这是程序员(或者至少是像我这样的人)寻找的。
Big Oh(简而言之)
function f(text) {
var n = text.length;
for (var i = 0; i < n; i++) {
f(text.slice(0, n-1))
}
// ... other JS logic here, which we can ignore ...
}
上面的大写哦是f(n) = O(n!)其中n表示输入集中的条目数, f表示每一项所做的操作。
Big-Oh符号是算法复杂度的渐近上界。 在编程中:假设的最坏情况所花费的时间, 或假设逻辑的最大重复计数,为输入的大小。
计算
记住(从上面的意思);我们只需要受N(输入大小)影响的最坏情况时间和/或最大重复次数, 然后再看一下(公认答案的)例子:
for (i = 0; i < 2*n; i += 2) { // line 123
for (j=n; j > i; j--) { // line 124
foo(); // line 125
}
}
Begin with this search-pattern: Find first line that N caused repeat behavior, Or caused increase of logic executed, But constant or not, ignore anything before that line. Seems line hundred-twenty-three is what we are searching ;-) On first sight, line seems to have 2*n max-looping. But looking again, we see i += 2 (and that half is skipped). So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet. Repeat search till method's end, and find next line matching our search-pattern, here that's line 124 Which is tricky, because strange condition, and reverse looping. But after remembering that we just need to consider maximum repeat count (or worst-case time taken). It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so: Add n to previous write down's end, but like "( n " instead of "+ n" (as this is inside previous loop), and close parenthesis only if we find something outside of previous loop.
搜索完成了!为什么?因为第125行(或之后的任何行)与我们的搜索模式不匹配。 现在我们可以关闭任何圆括号(在我们的记录中左开),结果如下:
f(n) = O( n( n ) )
试着进一步缩短“n(n)”部分,比如:
N (N) = N * N = n2 最后,用Big Oh符号来包装它,就像O(n2)或O(n²)一样,没有格式。