大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
让我们从头说起。
首先,接受这样一个原则:对数据的某些简单操作可以在O(1)时间内完成,即在与输入大小无关的时间内完成。C语言中的这些基本操作由
算术运算(例如+或%)。 逻辑操作(如&&)。 比较操作(例如,<=)。 结构访问操作(例如A[i]这样的数组索引,或指针后跟 使用->操作符降低)。 简单的赋值,例如将值复制到变量中。 调用库函数(例如,scanf, printf)。
要证明这一原理,需要对典型计算机的机器指令(基本步骤)进行详细研究。所描述的每一个操作都可以用少量的机器指令来完成;通常只需要一个或两个指令。 因此,C语言中的几种语句可以在O(1)时间内执行,也就是说,在与输入无关的某个常数时间内执行。这些简单的包括
表达式中不涉及函数调用的赋值语句。 读语句。 编写不需要调用函数来计算参数的语句。 跳转语句有break、continue、goto和return表达式 表达式不包含函数调用。
在C语言中,许多for循环是通过将索引变量初始化为某个值和来形成的 在每次循环中对该变量加1。for循环结束于 指数达到某个极限。例如,For循环
for (i = 0; i < n-1; i++)
{
small = i;
for (j = i+1; j < n; j++)
if (A[j] < A[small])
small = j;
temp = A[small];
A[small] = A[i];
A[i] = temp;
}
使用索引变量i。它在循环和迭代中每一次都使i增加1 当I达到n−1时停止。
然而,目前,我们只关注for循环的简单形式,其中最终值和初始值之间的差值除以索引变量的增量,告诉我们循环了多少次。这个计数是准确的,除非有办法通过跳转语句退出循环;在任何情况下,它都是迭代次数的上限。
例如,For循环迭代((n−1)−0)/1 = n−1次, 由于0是i的初始值,n−1是i达到的最大值(即当i 到达n−1时,循环停止,当I = n−1)时不发生迭代,并添加1 在循环的每一次迭代中。
In the simplest case, where the time spent in the loop body is the same for each iteration, we can multiply the big-oh upper bound for the body by the number of times around the loop. Strictly speaking, we must then add O(1) time to initialize the loop index and O(1) time for the first comparison of the loop index with the limit, because we test one more time than we go around the loop. However, unless it is possible to execute the loop zero times, the time to initialize the loop and test the limit once is a low-order term that can be dropped by the summation rule.
现在想想这个例子:
(1) for (j = 0; j < n; j++)
(2) A[i][j] = 0;
我们知道直线(1)花费O(1)时间。显然,我们循环了n次 我们可以用在线上得到的上限减去下限来确定 (1)再加1。由于主体,行(2),花费O(1)时间,我们可以忽略 增加j的时间和比较j与n的时间,两者都是O(1)。 因此,行(1)和行(2)的运行时间是n和O(1)的乘积,即O(n)。
类似地,我们可以限制由行组成的外部循环的运行时间 (2)到(4),即
(2) for (i = 0; i < n; i++)
(3) for (j = 0; j < n; j++)
(4) A[i][j] = 0;
我们已经建立了行(3)和行(4)的循环花费O(n)时间。 因此,我们可以忽略O(1)时间来增加i,并测试i是否< n in 每次迭代,得出每次外循环迭代花费O(n)时间。
外部循环的初始化i = 0和条件的(n + 1)st检验 i < n同样需要O(1)次,可以忽略。最后,我们观察到我们走了 绕外循环n圈,每次迭代花费O(n)时间,得到总数 O(n²)运行时间。
一个更实际的例子。
其他回答
我不知道如何通过编程来解决这个问题,但人们做的第一件事是我们对算法的特定模式进行抽样,比如4n²+ 2n + 1我们有两个规则:
如果我们有一个项的和,增长率最大的项被保留,其他项被省略。 如果我们有几个因数的乘积,常数因数就省略了。
如果我们化简f(x),其中f(x)是所做操作数量的公式,(上文解释的4n²+ 2n + 1),我们得到大O值[在这种情况下是O(n²)]。但这必须考虑到程序中的拉格朗日插值,这可能很难实现。如果真正的大O值是O(2^n)我们可能有O(x^n)这样的东西,那么这个算法可能是不可编程的。但如果有人证明我错了,给我代码. . . .
不要忘记考虑空间的复杂性,如果内存资源有限,这也是一个值得关注的问题。例如,你可能听到有人想要一个常数空间算法,这基本上是说算法所占用的空间量不依赖于代码中的任何因素。
有时,复杂性可能来自于某个东西被调用了多少次,循环执行的频率,内存分配的频率,等等,这是回答这个问题的另一部分。
最后,大O可以用于最坏情况、最佳情况和摊销情况,其中通常用最坏情况来描述算法可能有多糟糕。
让我们从头说起。
首先,接受这样一个原则:对数据的某些简单操作可以在O(1)时间内完成,即在与输入大小无关的时间内完成。C语言中的这些基本操作由
算术运算(例如+或%)。 逻辑操作(如&&)。 比较操作(例如,<=)。 结构访问操作(例如A[i]这样的数组索引,或指针后跟 使用->操作符降低)。 简单的赋值,例如将值复制到变量中。 调用库函数(例如,scanf, printf)。
要证明这一原理,需要对典型计算机的机器指令(基本步骤)进行详细研究。所描述的每一个操作都可以用少量的机器指令来完成;通常只需要一个或两个指令。 因此,C语言中的几种语句可以在O(1)时间内执行,也就是说,在与输入无关的某个常数时间内执行。这些简单的包括
表达式中不涉及函数调用的赋值语句。 读语句。 编写不需要调用函数来计算参数的语句。 跳转语句有break、continue、goto和return表达式 表达式不包含函数调用。
在C语言中,许多for循环是通过将索引变量初始化为某个值和来形成的 在每次循环中对该变量加1。for循环结束于 指数达到某个极限。例如,For循环
for (i = 0; i < n-1; i++)
{
small = i;
for (j = i+1; j < n; j++)
if (A[j] < A[small])
small = j;
temp = A[small];
A[small] = A[i];
A[i] = temp;
}
使用索引变量i。它在循环和迭代中每一次都使i增加1 当I达到n−1时停止。
然而,目前,我们只关注for循环的简单形式,其中最终值和初始值之间的差值除以索引变量的增量,告诉我们循环了多少次。这个计数是准确的,除非有办法通过跳转语句退出循环;在任何情况下,它都是迭代次数的上限。
例如,For循环迭代((n−1)−0)/1 = n−1次, 由于0是i的初始值,n−1是i达到的最大值(即当i 到达n−1时,循环停止,当I = n−1)时不发生迭代,并添加1 在循环的每一次迭代中。
In the simplest case, where the time spent in the loop body is the same for each iteration, we can multiply the big-oh upper bound for the body by the number of times around the loop. Strictly speaking, we must then add O(1) time to initialize the loop index and O(1) time for the first comparison of the loop index with the limit, because we test one more time than we go around the loop. However, unless it is possible to execute the loop zero times, the time to initialize the loop and test the limit once is a low-order term that can be dropped by the summation rule.
现在想想这个例子:
(1) for (j = 0; j < n; j++)
(2) A[i][j] = 0;
我们知道直线(1)花费O(1)时间。显然,我们循环了n次 我们可以用在线上得到的上限减去下限来确定 (1)再加1。由于主体,行(2),花费O(1)时间,我们可以忽略 增加j的时间和比较j与n的时间,两者都是O(1)。 因此,行(1)和行(2)的运行时间是n和O(1)的乘积,即O(n)。
类似地,我们可以限制由行组成的外部循环的运行时间 (2)到(4),即
(2) for (i = 0; i < n; i++)
(3) for (j = 0; j < n; j++)
(4) A[i][j] = 0;
我们已经建立了行(3)和行(4)的循环花费O(n)时间。 因此,我们可以忽略O(1)时间来增加i,并测试i是否< n in 每次迭代,得出每次外循环迭代花费O(n)时间。
外部循环的初始化i = 0和条件的(n + 1)st检验 i < n同样需要O(1)次,可以忽略。最后,我们观察到我们走了 绕外循环n圈,每次迭代花费O(n)时间,得到总数 O(n²)运行时间。
一个更实际的例子。
对于代码A,外层循环将执行n+1次,“1”时间表示检查i是否仍然满足要求的过程。内循环运行n次,n-2次....因此,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²)。
对于代码B,虽然内部循环不会介入并执行foo(),但内部循环将执行n次,这取决于外部循环的执行时间,即O(n)
我认为,一般来说用处不大,但为了完整起见,还有一个Big Omega Ω,它定义了算法复杂度的下界,还有一个Big Theta Θ,它同时定义了上界和下界。