我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


整数列中缺少NaN代表是熊猫的“陷阱”。

通常的解决方法是简单地使用浮动。


如果可以修改存储的数据,可以使用一个标记值来替换缺失的id。一个常见的用例,由列名推断,id是一个严格大于零的整数,您可以使用0作为前哨值,这样就可以编写

if row['id']:
   regular_process(row)
else:
   special_process(row)

假设您的DateColumn格式3312018.0应该转换为03/31/2018作为字符串。并且,一些记录丢失或为0。

df['DateColumn'] = df['DateColumn'].astype(int)
df['DateColumn'] = df['DateColumn'].astype(str)
df['DateColumn'] = df['DateColumn'].apply(lambda x: x.zfill(8))
df.loc[df['DateColumn'] == '00000000','DateColumn'] = '01011980'
df['DateColumn'] = pd.to_datetime(df['DateColumn'], format="%m%d%Y")
df['DateColumn'] = df['DateColumn'].apply(lambda x: x.strftime('%m/%d/%Y'))

我的用例是在加载到DB表之前修改数据:

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = df[col].astype(str)
df[col] = df[col].replace('-1', np.nan)

删除nan,转换为int,转换为str,然后重新插入nan。

它不漂亮,但它完成了工作!


我在使用pyspark时遇到了这个问题。由于这是运行在jvm上的代码的python前端,它需要类型安全,使用float而不是int是不可取的。我把熊猫包裹起来,解决了这个问题。函数中的Read_csv,该函数将在将用户定义的列转换为所需类型之前,用用户定义的填充值填充用户定义的列。这是我最终使用的:

def custom_read_csv(file_path, custom_dtype = None, fill_values = None, **kwargs):
    if custom_dtype is None:
        return pd.read_csv(file_path, **kwargs)
    else:
        assert 'dtype' not in kwargs.keys()
        df = pd.read_csv(file_path, dtype = {}, **kwargs)
        for col, typ in custom_dtype.items():
            if fill_values is None or col not in fill_values.keys():
                fill_val = -1
            else:
                fill_val = fill_values[col]
            df[col] = df[col].fillna(fill_val).astype(typ)
    return df

首先删除包含NaN的行。然后对其余行进行整型转换。 最后再次插入删除的行。 希望能奏效


如果可以删除带有NaN值的行,则可以使用.dropna()。

df = df.dropna(subset=['id'])

另外, 使用.fillna()和.astype()将NaN替换为值并将它们转换为int。

我在处理具有大整数的CSV文件时遇到了这个问题,而其中一些整数缺失(NaN)。使用float作为类型是不可取的,因为我可能会失去精度。

我的解决方案是使用str作为中间类型。 然后,您可以在稍后的代码中将字符串转换为int。我把NaN换成了0,但你可以选择任何值。

df = pd.read_csv(filename, dtype={'id':str})
df["id"] = df["id"].fillna("0").astype(int)

为了说明,这里有一个浮动可能会失去精度的例子:

s = "12345678901234567890"
f = float(s)
i = int(f)
i2 = int(s)
print (f, i, i2)

输出为:

1.2345678901234567e+19 12345678901234567168 12345678901234567890

如果你确实想在一个列中组合整数和nan,你可以使用'object'数据类型:

df['col'] = (
    df['col'].fillna(0)
    .astype(int)
    .astype(object)
    .where(df['col'].notnull())
)

这将用一个整数替换nan(不管哪个),转换为int,转换为object,最后重新插入nan。


这里的大多数解决方案都告诉您如何使用占位符整数来表示null。但是,如果不确定源数据中不会出现整数,那么这种方法就没有帮助。我的方法将格式浮动没有他们的十进制值,并将null转换为None。结果是一个对象数据类型,当加载到CSV中时,它看起来像一个带空值的整数字段。

keep_df[col] = keep_df[col].apply(lambda x: None if pandas.isnull(x) else '{0:.0f}'.format(pandas.to_numeric(x)))

在0.24版本中。+ pandas获得了保存缺少值的整型dtypes的能力。

可空整数数据类型。

Pandas可以使用arrays.IntegerArray表示可能缺少值的整数数据。这是在pandas中实现的扩展类型。它不是整数的默认dtype,也不会被推断出来;你必须显式地将dtype传递给array()或Series:

arr = pd.array([1, 2, np.nan], dtype=pd.Int64Dtype())
pd.Series(arr)

0      1
1      2
2    NaN
dtype: Int64

将列转换为可空整数使用:

df['myCol'] = df['myCol'].astype('Int64')

现在可以创建一个包含nan的pandas列作为dtype int,因为它现在正式添加在pandas 0.24.0上

熊猫0.24。X发行说明 引用:“Pandas已经获得了保存缺少值的整型dtypes的能力


import pandas as pd

df= pd.read_csv("data.csv")
df['id'] = pd.to_numeric(df['id'])

使用pd.to_numeric ()

df["DateColumn"] = pd.to_numeric(df["DateColumn"])

简单干净


从Pandas 1.0.0开始,你可以使用Pandas了。NA的价值观。这不会强制缺少值的整数列为浮点数。

在读取数据时,您需要做的是:

df= pd.read_csv("data.csv", dtype={'id': 'Int64'})  

注意'Int64'被引号括起来,I是大写的。这区分了Panda的'Int64'和numpy的'Int64'。

作为旁注,这也适用于.astype()

df['id'] = df['id'].astype('Int64')

文件在这里 https://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html


试试这个:

df[id]]

如果你输出它的dtypes,你将得到id Int64而不是普通的Int64


几周前,我遇到了一些离散的功能被格式化为“对象”的问题。这个解决方案似乎奏效了。

for col in discrete:
    df[col] = pd.to_numeric(df[col],errors='coerce').astype(pd.Int64Dtype())

如果你想在链接方法时使用它,你可以使用assign:

df = (
     df.assign(col = lambda x: x['col'].astype('Int64'))
)

与Int64的问题,像许多其他的解决方案,是如果你有空值,他们被替换为<NA>值,这与熊猫默认的'NaN'函数,如isnull()或fillna()不工作。或者,如果您将值转换为-1,则可能会删除您的信息。我的解决方案有点蹩脚,但将用np提供int值。Nan,允许Nan函数在不影响您的值的情况下工作。

            def to_int(x):
                try:
                    return int(x)
                except:
                    return np.nan

            df[column] = df[column].apply(to_int)

使用.fillna()将所有NaN值替换为0,然后使用astype(int)将其转换为int

df['id'] = df['id'].fillna(0).astype(int)

对于任何需要在包含NULL/ nan的列中具有int值,但在其他答案中提到的不能使用pandas版本0.24.0可空整数特性的约束下工作的人,我建议使用pd.where将列转换为对象类型:

df = df.where(pd.notnull(df), None)

这将数据帧中的所有nan转换为None,将混合类型的列作为对象,但将int值保留为int,而不是float。


我也遇到过类似的问题。这就是我的解决方案:

def toint(zahl = 1.1):
    try:
        zahl = int(zahl)
    except:
        zahl = np.nan
    return zahl

print(toint(4.776655), toint(np.nan), toint('test'))

4 楠楠

df = pd.read_csv("data.csv") 
df['id'] = df['id'].astype(float)
df['id'] = toint(df['id'])

首先,您需要指定新的整数类型Int8(…Int64),它可以处理空整数数据(pandas版本>= 0.24.0)

df = df.astype('Int8')

但是你可能想要只针对包含NaN/null的整数数据的特定列:

df = df . astype((’col1’:’Int8’’col2’:’Int8’、’col3’:’Int8’)

此时,NaN将被转换为<NA>,如果您希望使用df.fillna()更改默认空值,则需要在希望更改的列上强制使用对象数据类型,否则您将看到 TypeError: <U1不能转换为IntegerDtype

你可以通过 Df = Df .astype(对象)如果你不介意将每个列的数据类型更改为对象(单独地,每个值的类型仍然保留)…或 Df = Df。如果您喜欢针对单个列,则Astype ({"col1":对象,"col2":对象})。

这应该有助于强制将混合了null值的整数列保持为整数格式,并将空值更改为您喜欢的任何值。我不能说这种方法的效率,但它适用于我的格式化和打印目的。


我认为@消化1010101的方法更适合Pandas 1.2。+版本,像这样的东西应该做的工作:

df = df.astype({
            'col_1': 'Int64',
            'col_2': 'Int64',
            'col_3': 'Int64',
            'col_4': 'Int64', })

无论您的pandas系列是对象数据类型还是简单的浮点数据类型,下面的方法都可以工作

df = pd.read_csv("data.csv") 
df['id'] = df['id'].astype(float).astype('Int64')

因为我在这里没有看到答案,我不妨加上它:

如果你因为某种原因仍然不能处理np,可以用一行程序将nan转换为空字符串。Na或者pd。我和我一样,在使用旧版本的熊猫库时:

df select_dtypes(“当家”)。astype (str) fillna(- 1)。replace(“- 1”、“)


类似于@hibernado的答案,但保持为整数(而不是字符串)

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = np.where(df[col] == -1, np.nan, df[col])

df.loc[~df['id'].isna(), 'id'] = df.loc[~df['id'].isna(), 'id'].astype('int')