我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

几周前,我遇到了一些离散的功能被格式化为“对象”的问题。这个解决方案似乎奏效了。

for col in discrete:
    df[col] = pd.to_numeric(df[col],errors='coerce').astype(pd.Int64Dtype())

其他回答

类似于@hibernado的答案,但保持为整数(而不是字符串)

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = np.where(df[col] == -1, np.nan, df[col])

几周前,我遇到了一些离散的功能被格式化为“对象”的问题。这个解决方案似乎奏效了。

for col in discrete:
    df[col] = pd.to_numeric(df[col],errors='coerce').astype(pd.Int64Dtype())

这里的大多数解决方案都告诉您如何使用占位符整数来表示null。但是,如果不确定源数据中不会出现整数,那么这种方法就没有帮助。我的方法将格式浮动没有他们的十进制值,并将null转换为None。结果是一个对象数据类型,当加载到CSV中时,它看起来像一个带空值的整数字段。

keep_df[col] = keep_df[col].apply(lambda x: None if pandas.isnull(x) else '{0:.0f}'.format(pandas.to_numeric(x)))

试试这个:

df[id]]

如果你输出它的dtypes,你将得到id Int64而不是普通的Int64

import pandas as pd

df= pd.read_csv("data.csv")
df['id'] = pd.to_numeric(df['id'])