我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

如果可以删除带有NaN值的行,则可以使用.dropna()。

df = df.dropna(subset=['id'])

另外, 使用.fillna()和.astype()将NaN替换为值并将它们转换为int。

我在处理具有大整数的CSV文件时遇到了这个问题,而其中一些整数缺失(NaN)。使用float作为类型是不可取的,因为我可能会失去精度。

我的解决方案是使用str作为中间类型。 然后,您可以在稍后的代码中将字符串转换为int。我把NaN换成了0,但你可以选择任何值。

df = pd.read_csv(filename, dtype={'id':str})
df["id"] = df["id"].fillna("0").astype(int)

为了说明,这里有一个浮动可能会失去精度的例子:

s = "12345678901234567890"
f = float(s)
i = int(f)
i2 = int(s)
print (f, i, i2)

输出为:

1.2345678901234567e+19 12345678901234567168 12345678901234567890

其他回答

我在使用pyspark时遇到了这个问题。由于这是运行在jvm上的代码的python前端,它需要类型安全,使用float而不是int是不可取的。我把熊猫包裹起来,解决了这个问题。函数中的Read_csv,该函数将在将用户定义的列转换为所需类型之前,用用户定义的填充值填充用户定义的列。这是我最终使用的:

def custom_read_csv(file_path, custom_dtype = None, fill_values = None, **kwargs):
    if custom_dtype is None:
        return pd.read_csv(file_path, **kwargs)
    else:
        assert 'dtype' not in kwargs.keys()
        df = pd.read_csv(file_path, dtype = {}, **kwargs)
        for col, typ in custom_dtype.items():
            if fill_values is None or col not in fill_values.keys():
                fill_val = -1
            else:
                fill_val = fill_values[col]
            df[col] = df[col].fillna(fill_val).astype(typ)
    return df

如果可以修改存储的数据,可以使用一个标记值来替换缺失的id。一个常见的用例,由列名推断,id是一个严格大于零的整数,您可以使用0作为前哨值,这样就可以编写

if row['id']:
   regular_process(row)
else:
   special_process(row)

几周前,我遇到了一些离散的功能被格式化为“对象”的问题。这个解决方案似乎奏效了。

for col in discrete:
    df[col] = pd.to_numeric(df[col],errors='coerce').astype(pd.Int64Dtype())

无论您的pandas系列是对象数据类型还是简单的浮点数据类型,下面的方法都可以工作

df = pd.read_csv("data.csv") 
df['id'] = df['id'].astype(float).astype('Int64')

试试这个:

df[id]]

如果你输出它的dtypes,你将得到id Int64而不是普通的Int64