我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

无论您的pandas系列是对象数据类型还是简单的浮点数据类型,下面的方法都可以工作

df = pd.read_csv("data.csv") 
df['id'] = df['id'].astype(float).astype('Int64')

其他回答

df.loc[~df['id'].isna(), 'id'] = df.loc[~df['id'].isna(), 'id'].astype('int')

假设您的DateColumn格式3312018.0应该转换为03/31/2018作为字符串。并且,一些记录丢失或为0。

df['DateColumn'] = df['DateColumn'].astype(int)
df['DateColumn'] = df['DateColumn'].astype(str)
df['DateColumn'] = df['DateColumn'].apply(lambda x: x.zfill(8))
df.loc[df['DateColumn'] == '00000000','DateColumn'] = '01011980'
df['DateColumn'] = pd.to_datetime(df['DateColumn'], format="%m%d%Y")
df['DateColumn'] = df['DateColumn'].apply(lambda x: x.strftime('%m/%d/%Y'))

首先删除包含NaN的行。然后对其余行进行整型转换。 最后再次插入删除的行。 希望能奏效

在0.24版本中。+ pandas获得了保存缺少值的整型dtypes的能力。

可空整数数据类型。

Pandas可以使用arrays.IntegerArray表示可能缺少值的整数数据。这是在pandas中实现的扩展类型。它不是整数的默认dtype,也不会被推断出来;你必须显式地将dtype传递给array()或Series:

arr = pd.array([1, 2, np.nan], dtype=pd.Int64Dtype())
pd.Series(arr)

0      1
1      2
2    NaN
dtype: Int64

将列转换为可空整数使用:

df['myCol'] = df['myCol'].astype('Int64')

从Pandas 1.0.0开始,你可以使用Pandas了。NA的价值观。这不会强制缺少值的整数列为浮点数。

在读取数据时,您需要做的是:

df= pd.read_csv("data.csv", dtype={'id': 'Int64'})  

注意'Int64'被引号括起来,I是大写的。这区分了Panda的'Int64'和numpy的'Int64'。

作为旁注,这也适用于.astype()

df['id'] = df['id'].astype('Int64')

文件在这里 https://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html