我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

使用pd.to_numeric ()

df["DateColumn"] = pd.to_numeric(df["DateColumn"])

简单干净

其他回答

如果你确实想在一个列中组合整数和nan,你可以使用'object'数据类型:

df['col'] = (
    df['col'].fillna(0)
    .astype(int)
    .astype(object)
    .where(df['col'].notnull())
)

这将用一个整数替换nan(不管哪个),转换为int,转换为object,最后重新插入nan。

我的用例是在加载到DB表之前修改数据:

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = df[col].astype(str)
df[col] = df[col].replace('-1', np.nan)

删除nan,转换为int,转换为str,然后重新插入nan。

它不漂亮,但它完成了工作!

使用.fillna()将所有NaN值替换为0,然后使用astype(int)将其转换为int

df['id'] = df['id'].fillna(0).astype(int)
df.loc[~df['id'].isna(), 'id'] = df.loc[~df['id'].isna(), 'id'].astype('int')

我也遇到过类似的问题。这就是我的解决方案:

def toint(zahl = 1.1):
    try:
        zahl = int(zahl)
    except:
        zahl = np.nan
    return zahl

print(toint(4.776655), toint(np.nan), toint('test'))

4 楠楠

df = pd.read_csv("data.csv") 
df['id'] = df['id'].astype(float)
df['id'] = toint(df['id'])