我将数据从.csv文件读取到Pandas数据框架,如下所示。对于其中一列,即id,我想将列类型指定为int。问题是id系列有缺失/空值。

当我试图在读取.csv时将id列强制转换为整数时,我得到:

df= pd.read_csv("data.csv", dtype={'id': int}) 
error: Integer column has NA values

或者,我尝试转换列类型后,阅读如下,但这一次我得到:

df= pd.read_csv("data.csv") 
df[['id']] = df[['id']].astype(int)
error: Cannot convert NA to integer

我该如何解决这个问题?


当前回答

整数列中缺少NaN代表是熊猫的“陷阱”。

通常的解决方法是简单地使用浮动。

其他回答

首先,您需要指定新的整数类型Int8(…Int64),它可以处理空整数数据(pandas版本>= 0.24.0)

df = df.astype('Int8')

但是你可能想要只针对包含NaN/null的整数数据的特定列:

df = df . astype((’col1’:’Int8’’col2’:’Int8’、’col3’:’Int8’)

此时,NaN将被转换为<NA>,如果您希望使用df.fillna()更改默认空值,则需要在希望更改的列上强制使用对象数据类型,否则您将看到 TypeError: <U1不能转换为IntegerDtype

你可以通过 Df = Df .astype(对象)如果你不介意将每个列的数据类型更改为对象(单独地,每个值的类型仍然保留)…或 Df = Df。如果您喜欢针对单个列,则Astype ({"col1":对象,"col2":对象})。

这应该有助于强制将混合了null值的整数列保持为整数格式,并将空值更改为您喜欢的任何值。我不能说这种方法的效率,但它适用于我的格式化和打印目的。

这里的大多数解决方案都告诉您如何使用占位符整数来表示null。但是,如果不确定源数据中不会出现整数,那么这种方法就没有帮助。我的方法将格式浮动没有他们的十进制值,并将null转换为None。结果是一个对象数据类型,当加载到CSV中时,它看起来像一个带空值的整数字段。

keep_df[col] = keep_df[col].apply(lambda x: None if pandas.isnull(x) else '{0:.0f}'.format(pandas.to_numeric(x)))

我认为@消化1010101的方法更适合Pandas 1.2。+版本,像这样的东西应该做的工作:

df = df.astype({
            'col_1': 'Int64',
            'col_2': 'Int64',
            'col_3': 'Int64',
            'col_4': 'Int64', })

使用pd.to_numeric ()

df["DateColumn"] = pd.to_numeric(df["DateColumn"])

简单干净

类似于@hibernado的答案,但保持为整数(而不是字符串)

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = np.where(df[col] == -1, np.nan, df[col])