我更喜欢尽可能少的正式定义和简单的数学。


当前回答

算法例(Java):

public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
    for(/* each */Integer i:/* in */L)
    {
        if(i == K)
        {
            return true;
        }
    }
    
    return false;
}

算法描述:

这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。

Big-O 评分代表了复杂性(时间、空间等)的顶端。

要找到 The Big-O on Time Complexity:

计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性

还有大欧米加,它代表了最佳案例的复杂性:

最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant

其他回答

从(源)可以读到:

大 O 评级根据其增长率定义函数:具有相同增长率的不同函数可以使用相同的 O 评级进行代表。

在计算机科学时间复杂性和空间复杂性理论中,人们可以认为大O评级是对时间和空间的某种最糟糕情况的算法的分类。

一个算法被称为采取线性时间/空间,或者O(n)时间/空间,如果其时间/空间复杂性是O(n)。

和 O(n log n) 如:

一个算法被称为在量子时间/空间中运行,如果T(n) = O(n log^k n)为某种积极的连续 k;线性时间/空间是 k = 1(来源)的情况。

此分類上一篇

上述说法是一个很好的开始,但不是完全真实的。

更准确的解释(数学)

n = 输入参数数

T(n) = 表达算法运行时间的实际函数为 n 的函数

c = 常态

f(n)= 表达算法运行时间为 n 的函数的约定函数

接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。

lim     T(n) ≤ c×f(n)
n→∞

方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。

T(n)∈O(n)

回到英语

基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。

Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。

我不确定我正在进一步贡献这个主题,但我仍然认为我会分享:我曾经发现这个博客帖子有几个非常有用的(也许非常基本的)解释和例子关于Big O:

通过例子,这有助于在我的<unk>子像<unk>子一样的喉<unk>中获得细微的基本,所以我认为这是一个相当下载10分钟的阅读,让你走在正确的方向。

预告片

算法:解决问题的程序/公式


如何分析算法,如何比较算法?

例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。

Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。

三个关键点:

比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析

空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。

什么是“大O”笔记的明确英语解释?

我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。

因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。


Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
    int sum=0;   // here we've 1 operation
    for(int i=0; i < nums.length;i++){   // we've n times
        sum += nums[i]; // taking initialization and assignments, 3 ops
    }
    return sum;
}

在上面的算法中,让我们说你发现T(n)如下(时间复杂性):

T(n) = 3*n + 2

n= 1,000,000   -> T(1,000,000) = 3,000,002
n=1,000,000,000  -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000  -> T(10,000,000,000) = 30,000,000,002

将此类输入给另一个函数 F(n) = n

n= 1,000,000   -> F(1,000,000) = 1,000,000 
n=1,000,000,000  -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000  -> F(10,000,000,000) = 10,000,000,000

因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,

O(T(n)) = F(n)
O(T(n)) = n