我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 描述了一个功能的增长行为上限,例如一个程序的运行时间,当输入变得大。
例子:
O(n):如果我翻倍输入大小,运行时间将翻倍O(n2):如果输入大小将翻倍运行时间四倍O(log n):如果输入大小翻倍运行时间将增加一倍O(2n):如果输入大小增加一倍,运行时间将翻倍
输入尺寸通常是比特所需的空间来代表输入。
其他回答
这里来了大O,告诉我们这个数学是多么艰难。
现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!
对于大 n 而言, n 平方比 n 更大。
一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。
大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。
现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!
你和我一起学到了这一切!你太聪明了!谢谢你!
现在这个工作已经完成了,让我们玩吧!
有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。
此分類上一篇
如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:
大 O 评级告诉你解决一个无限大的问题的成本。
此外,
常见因素不可忽视
如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。
然而,任何“大”比恒定的因素都可以被检测到。
如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。
大 O 描述一类功能。
它描述了大输入值的快速功能的增长方式。
对于一个特定的函数f,O(f)分解了所有函数g(n),您可以找到一个n0和一个恒定的c,以便与n>=n0的g(n)的所有值都低于或相当于c*f(n)。
在较少的数学词语中,O(f)是一组函数,即所有函数,从某些值 n0 向前,增长缓慢或像 f 一样快。
如果 f(n) = n 那么
g(n) = 3n 是 O(f) 。 因为恒定的因素不重要 h(n) = n+1000 是 O(f) 因为它可能比所有值小于 1000 但对于大 O 只有大输入物质。
然而,i(n) = n^2不在O(f)中,因为一个四方函数比一个线性函数增长得更快。