我更喜欢尽可能少的正式定义和简单的数学。


当前回答

大 O 描述一类功能。

它描述了大输入值的快速功能的增长方式。

对于一个特定的函数f,O(f)分解了所有函数g(n),您可以找到一个n0和一个恒定的c,以便与n>=n0的g(n)的所有值都低于或相当于c*f(n)。

在较少的数学词语中,O(f)是一组函数,即所有函数,从某些值 n0 向前,增长缓慢或像 f 一样快。

如果 f(n) = n 那么

g(n) = 3n 是 O(f) 。 因为恒定的因素不重要 h(n) = n+1000 是 O(f) 因为它可能比所有值小于 1000 但对于大 O 只有大输入物质。

然而,i(n) = n^2不在O(f)中,因为一个四方函数比一个线性函数增长得更快。

其他回答

大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。

Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。

这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。

此外,同意上述所有详细答案,希望这有助于!!!

如果我想向6岁的孩子解释这一点,我会开始绘制一些函数f(x) = x 和f(x) = x^2 例如,并问一个孩子哪个函数将是页面顶部的顶部函数。

从(源)可以读到:

大 O 评级根据其增长率定义函数:具有相同增长率的不同函数可以使用相同的 O 评级进行代表。

在计算机科学时间复杂性和空间复杂性理论中,人们可以认为大O评级是对时间和空间的某种最糟糕情况的算法的分类。

一个算法被称为采取线性时间/空间,或者O(n)时间/空间,如果其时间/空间复杂性是O(n)。

和 O(n log n) 如:

一个算法被称为在量子时间/空间中运行,如果T(n) = O(n log^k n)为某种积极的连续 k;线性时间/空间是 k = 1(来源)的情况。

此分類上一篇

预告片

算法:解决问题的程序/公式


如何分析算法,如何比较算法?

例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。

Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。

三个关键点:

比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析

空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。

假设我们正在谈论一个算法A,该算法应该做一些与数据集的尺寸n。

然后 O( <某些表达式 X 涉及 n> ) 意思,在简单的英语:

如果您在执行 A 时不幸,可能需要尽可能多的 X(n) 操作完成。

正如发生的那样,有某些功能(想想它们作为X(n))的实施,这些功能往往很常见,这些功能是众所周知的,易于比较的(例子:1、Log N、N、N^2、N!等)。

比较这些,当谈到A和其他算法时,很容易根据他们可能需要完成的操作数量排序算法。

总的来说,我们的目标将是找到或结构一个算法A,以便它有一个函数X(n)返回尽可能低的数字。