我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 描述一类功能。
它描述了大输入值的快速功能的增长方式。
对于一个特定的函数f,O(f)分解了所有函数g(n),您可以找到一个n0和一个恒定的c,以便与n>=n0的g(n)的所有值都低于或相当于c*f(n)。
在较少的数学词语中,O(f)是一组函数,即所有函数,从某些值 n0 向前,增长缓慢或像 f 一样快。
如果 f(n) = n 那么
g(n) = 3n 是 O(f) 。 因为恒定的因素不重要 h(n) = n+1000 是 O(f) 因为它可能比所有值小于 1000 但对于大 O 只有大输入物质。
然而,i(n) = n^2不在O(f)中,因为一个四方函数比一个线性函数增长得更快。
其他回答
上述说法是一个很好的开始,但不是完全真实的。
更准确的解释(数学)
n = 输入参数数
T(n) = 表达算法运行时间的实际函数为 n 的函数
c = 常态
f(n)= 表达算法运行时间为 n 的函数的约定函数
接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。
lim T(n) ≤ c×f(n)
n→∞
方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。
T(n)∈O(n)
回到英语
基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。
Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。
假设我们正在谈论一个算法A,该算法应该做一些与数据集的尺寸n。
然后 O( <某些表达式 X 涉及 n> ) 意思,在简单的英语:
如果您在执行 A 时不幸,可能需要尽可能多的 X(n) 操作完成。
正如发生的那样,有某些功能(想想它们作为X(n))的实施,这些功能往往很常见,这些功能是众所周知的,易于比较的(例子:1、Log N、N、N^2、N!等)。
比较这些,当谈到A和其他算法时,很容易根据他们可能需要完成的操作数量排序算法。
总的来说,我们的目标将是找到或结构一个算法A,以便它有一个函数X(n)返回尽可能低的数字。
它切断到骨头,只提供关于算法的规模性质的信息,具体如何使用资源(思考时间或记忆)的算法规模,以回应“输入大小”。
考虑蒸汽发动机和火箭之间的差异. 它们不仅仅是相同的东西的不同品种(如说,一个Prius发动机与一个Lamborghini发动机),但它们是显著不同的类型的驱动系统,在它们的核心。
什么是“大O”笔记的明确英语解释?
我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。
因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。
Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
int sum=0; // here we've 1 operation
for(int i=0; i < nums.length;i++){ // we've n times
sum += nums[i]; // taking initialization and assignments, 3 ops
}
return sum;
}
在上面的算法中,让我们说你发现T(n)如下(时间复杂性):
T(n) = 3*n + 2
n= 1,000,000 -> T(1,000,000) = 3,000,002
n=1,000,000,000 -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000 -> T(10,000,000,000) = 30,000,000,002
将此类输入给另一个函数 F(n) = n
n= 1,000,000 -> F(1,000,000) = 1,000,000
n=1,000,000,000 -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000 -> F(10,000,000,000) = 10,000,000,000
因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,
O(T(n)) = F(n)
O(T(n)) = n
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。