我更喜欢尽可能少的正式定义和简单的数学。


当前回答

什么是“大O”笔记的明确英语解释?

我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。

因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。


Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
    int sum=0;   // here we've 1 operation
    for(int i=0; i < nums.length;i++){   // we've n times
        sum += nums[i]; // taking initialization and assignments, 3 ops
    }
    return sum;
}

在上面的算法中,让我们说你发现T(n)如下(时间复杂性):

T(n) = 3*n + 2

n= 1,000,000   -> T(1,000,000) = 3,000,002
n=1,000,000,000  -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000  -> T(10,000,000,000) = 30,000,000,002

将此类输入给另一个函数 F(n) = n

n= 1,000,000   -> F(1,000,000) = 1,000,000 
n=1,000,000,000  -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000  -> F(10,000,000,000) = 10,000,000,000

因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,

O(T(n)) = F(n)
O(T(n)) = n

其他回答


最简单的定义我可以给大 Oh 评分是:

智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。

因此,要找到一个名字给了电话号码(逆转搜索):

最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。

旅行卖家

听起来很简单吗?再想一想。

聚合物时间

另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。

假设我们正在谈论一个算法A,该算法应该做一些与数据集的尺寸n。

然后 O( <某些表达式 X 涉及 n> ) 意思,在简单的英语:

如果您在执行 A 时不幸,可能需要尽可能多的 X(n) 操作完成。

正如发生的那样,有某些功能(想想它们作为X(n))的实施,这些功能往往很常见,这些功能是众所周知的,易于比较的(例子:1、Log N、N、N^2、N!等)。

比较这些,当谈到A和其他算法时,很容易根据他们可能需要完成的操作数量排序算法。

总的来说,我们的目标将是找到或结构一个算法A,以便它有一个函数X(n)返回尽可能低的数字。

如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:

大 O 评级告诉你解决一个无限大的问题的成本。

此外,

常见因素不可忽视

如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。

然而,任何“大”比恒定的因素都可以被检测到。


如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。

大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。

要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。

换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。

大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。