我更喜欢尽可能少的正式定义和简单的数学。
当前回答
什么是“大O”笔记的明确英语解释?
我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。
因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。
Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
int sum=0; // here we've 1 operation
for(int i=0; i < nums.length;i++){ // we've n times
sum += nums[i]; // taking initialization and assignments, 3 ops
}
return sum;
}
在上面的算法中,让我们说你发现T(n)如下(时间复杂性):
T(n) = 3*n + 2
n= 1,000,000 -> T(1,000,000) = 3,000,002
n=1,000,000,000 -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000 -> T(10,000,000,000) = 30,000,000,002
将此类输入给另一个函数 F(n) = n
n= 1,000,000 -> F(1,000,000) = 1,000,000
n=1,000,000,000 -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000 -> F(10,000,000,000) = 10,000,000,000
因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,
O(T(n)) = F(n)
O(T(n)) = n
其他回答
f(x) = k(x)g(x) k 与 a(如果 a = +∞,这意味着有 N 和 M 等数,以至于每个 x > N 的, < M 等数。
sin x = O(x) when x → 0. sin x = O(1) when x → +∞, x2 + x = O(x) when x → 0, x2 + x = O(x2) when x → +∞, ln(x) = o(x) = O(x) when x → +∞。
更多例子
测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。
好事:
邪恶的:
和那可怕的:
statement;
是持久的. 声明的运行时间不会与 N 相比变化
for ( i = 0; i < N; i++ )
statement;
for ( i = 0; i < N; i++ )
{
for ( j = 0; j < N; j++ )
statement;
}
是四角形的,两条路的运行时间相当于N的平面,当N翻倍时,运行时间增加为N * N。
while ( low <= high )
{
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
算法的运行时间是相当于 N 可以分为 2 次的次数。
void quicksort ( int list[], int left, int right )
{
int pivot = partition ( list, left, right );
quicksort ( list, left, pivot - 1 );
quicksort ( list, pivot + 1, right );
}
是 N * log ( N ). 运行时间由 N 轮子(以色列或重复)组成,它们是 logarithmic,因此算法是线性和 logarithmic 的组合。
一般来说,做某些东西与每个项目在一个维度是线性的,做某些东西与每个项目在两个维度是四方的,并将工作区域分成一半是逻辑的。 还有其他大 O 测量,如圆形,曝光,和平方根,但它们不被报告为常见。 大 O 评分被描述为 O( )在哪里是测量。
查看更多: 这里
告诉你从亚马逊订购哈利·波特:完整的8电影收藏(Blu-ray)并同时在线下载相同的电影收藏。你想测试哪种方法更快。
从实验中,我们知道在线购物的规模比在线下载更好,很重要的是要了解大O评级,因为它有助于分析算法的规模性和效率。
注意: 大 O 评级是算法最糟糕的场景,假设 O(1) 和 O(n) 是上面的例子最糟糕的场景。
参考: http://carlcheo.com/compsci
“什么是明确的英语解释大O?尽可能少的正式定义和简单的数学。
这样一个美丽简单而短暂的问题似乎至少值得一个同样短暂的答案,就像一个学生在教学期间可以得到的那样。
大 O 评级简单地说明一个算法可以运行多长时间,仅仅是输入数据的数量。
(在一个美妙的,无单位的时间感中!)(这就是重要,因为人们总是想要更多,无论他们生活在今天还是明天)
好吧,什么是那么奇妙的关于大O评级,如果这就是它做什么?
实际上,Big O分析是如此有用和重要,因为Big O把重点放在算法本身的复杂性上,完全忽略了一切只是比例性恒定的东西 - 如JavaScript引擎,CPU的速度,您的互联网连接,以及所有快速变成像模型T一样可笑的过时的东西。
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 什么是“P=NP?”,为什么这是一个如此著名的问题?
- 两个长度不等的表之间的排列