我更喜欢尽可能少的正式定义和简单的数学。


当前回答

“什么是明确的英语解释大O?尽可能少的正式定义和简单的数学。

这样一个美丽简单而短暂的问题似乎至少值得一个同样短暂的答案,就像一个学生在教学期间可以得到的那样。

大 O 评级简单地说明一个算法可以运行多长时间,仅仅是输入数据的数量。

(在一个美妙的,无单位的时间感中!)(这就是重要,因为人们总是想要更多,无论他们生活在今天还是明天)

好吧,什么是那么奇妙的关于大O评级,如果这就是它做什么?

实际上,Big O分析是如此有用和重要,因为Big O把重点放在算法本身的复杂性上,完全忽略了一切只是比例性恒定的东西 - 如JavaScript引擎,CPU的速度,您的互联网连接,以及所有快速变成像模型T一样可笑的过时的东西。

其他回答

1(一) :

这种复杂性与O(1)相同,除非它只是稍微糟糕一点,对于所有实用目的,你可以把它视为一个非常大的连续规模。

和(n):

O(n log n):

O(n2):

它作为一个平方,在那里 n 是平方侧的长度. 这是与“网络效应”相同的增长率,在那里网络中的每个人都可以知道网络中的每个人. 增长是昂贵的. 大多数可扩展的解决方案不能使用这个复杂度的算法,而不做显著的体操。

二(二) :

测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。

好事:

邪恶的:

和那可怕的:

预告片

算法:解决问题的程序/公式


如何分析算法,如何比较算法?

例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。

Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。

三个关键点:

比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析

空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。

当我们有一个函数,如f(n) = n+3 和我们想知道图表看起来如何喜欢,当n接近无限时,我们只是放下所有的连续和较低的顺序术语,因为它们不在乎什么时候n变得大。

常规和较低的命令时间的简单落下,正是找到下方和上方的功能的过程。

根据定义,一个函数是另一个函数的下层或上层界限,如果您可以找到一个恒定的函数,以便为每个 n 的输出比原始函数更大(或较小)。

f(n) = n*C > f(n) = n+3

而且是的 C = 2 会这样做,因此我们的函数 f(n) = n 可以是我们函数 f(x) = x + 3 的顶部界限。

相同的下限:

f(n) = n*C < f(n) = n+3

C = 2 會這樣做

大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”

因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。

我的名单

比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!

為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2

我希望这就像你想要的那样简单。