我更喜欢尽可能少的正式定义和简单的数学。


当前回答

“什么是明确的英语解释大O?尽可能少的正式定义和简单的数学。

这样一个美丽简单而短暂的问题似乎至少值得一个同样短暂的答案,就像一个学生在教学期间可以得到的那样。

大 O 评级简单地说明一个算法可以运行多长时间,仅仅是输入数据的数量。

(在一个美妙的,无单位的时间感中!)(这就是重要,因为人们总是想要更多,无论他们生活在今天还是明天)

好吧,什么是那么奇妙的关于大O评级,如果这就是它做什么?

实际上,Big O分析是如此有用和重要,因为Big O把重点放在算法本身的复杂性上,完全忽略了一切只是比例性恒定的东西 - 如JavaScript引擎,CPU的速度,您的互联网连接,以及所有快速变成像模型T一样可笑的过时的东西。

其他回答

Big-O 是由程序所消耗的资源增加率,即问题例大小。

资源:可能是CPU时间,可能是最大 RAM 空间。

说问题是“找到金额”,

int Sum(int*arr,int size){
      int sum=0;
      while(size-->0) 
         sum+=arr[size]; 

      return sum;
}

problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5

说问题是“找到组合”,

    void Combination(int*arr,int size)
    { int outer=size,inner=size;
      while(outer -->0) {
        inner=size;
        while(inner -->0)
          cout<<arr[outer]<<"-"<<arr[inner]<<endl;
      }
    }

problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25

对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。

测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。

好事:

邪恶的:

和那可怕的:

什么是“大O”笔记的明确英语解释?

我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。

因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。


Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
    int sum=0;   // here we've 1 operation
    for(int i=0; i < nums.length;i++){   // we've n times
        sum += nums[i]; // taking initialization and assignments, 3 ops
    }
    return sum;
}

在上面的算法中,让我们说你发现T(n)如下(时间复杂性):

T(n) = 3*n + 2

n= 1,000,000   -> T(1,000,000) = 3,000,002
n=1,000,000,000  -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000  -> T(10,000,000,000) = 30,000,000,002

将此类输入给另一个函数 F(n) = n

n= 1,000,000   -> F(1,000,000) = 1,000,000 
n=1,000,000,000  -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000  -> F(10,000,000,000) = 10,000,000,000

因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,

O(T(n)) = F(n)
O(T(n)) = n

大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”

因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。

我的名单

比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!

為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2

我希望这就像你想要的那样简单。

假设我们正在谈论一个算法A,该算法应该做一些与数据集的尺寸n。

然后 O( <某些表达式 X 涉及 n> ) 意思,在简单的英语:

如果您在执行 A 时不幸,可能需要尽可能多的 X(n) 操作完成。

正如发生的那样,有某些功能(想想它们作为X(n))的实施,这些功能往往很常见,这些功能是众所周知的,易于比较的(例子:1、Log N、N、N^2、N!等)。

比较这些,当谈到A和其他算法时,很容易根据他们可能需要完成的操作数量排序算法。

总的来说,我们的目标将是找到或结构一个算法A,以便它有一个函数X(n)返回尽可能低的数字。