我更喜欢尽可能少的正式定义和简单的数学。


当前回答

当我们有一个函数,如f(n) = n+3 和我们想知道图表看起来如何喜欢,当n接近无限时,我们只是放下所有的连续和较低的顺序术语,因为它们不在乎什么时候n变得大。

常规和较低的命令时间的简单落下,正是找到下方和上方的功能的过程。

根据定义,一个函数是另一个函数的下层或上层界限,如果您可以找到一个恒定的函数,以便为每个 n 的输出比原始函数更大(或较小)。

f(n) = n*C > f(n) = n+3

而且是的 C = 2 会这样做,因此我们的函数 f(n) = n 可以是我们函数 f(x) = x + 3 的顶部界限。

相同的下限:

f(n) = n*C < f(n) = n+3

C = 2 會這樣做

其他回答

什么是清晰的英语解释大O? 尽可能少的正式定义和简单的数学。

一个简单的英语解释需要Big-O评分:

当我们编程时,我们试图解决一个问题. 我们编码的称为算法. 大 O 评级允许我们以标准的方式比较我们算法的最糟糕的案例性能. 硬件特征随着时间的推移而变化,硬件的改进可以减少运行算法需要的时间。

英文片名 What Big O Notation 是:

不是所有的算法运行相同的时间,并且可以根据输入中的项目数量而变化,我们将称之为n. 基于这一点,我们将考虑最糟糕的案例分析,或者运行时间的上限,因为n 变得更大和更大。

大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。

定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。

当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。

例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。

void Function1(List<string> data)
{
string str = data[0];
}

void Function2(List<string> data)
        {
            foreach(string str in data)
            {
                if (str == "shiv")
                {
                    return;
                }
            }
        }

因此,通过查看Big O评级,我们分类算法的好和坏区域。

此分類上一篇

https://www.youtube.com/watch?v=k6kxtzICG_g

这是一个非常简单的解释,但我希望它涵盖了最重要的细节。

让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。

根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。

由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。

当我们有一个函数,如f(n) = n+3 和我们想知道图表看起来如何喜欢,当n接近无限时,我们只是放下所有的连续和较低的顺序术语,因为它们不在乎什么时候n变得大。

常规和较低的命令时间的简单落下,正是找到下方和上方的功能的过程。

根据定义,一个函数是另一个函数的下层或上层界限,如果您可以找到一个恒定的函数,以便为每个 n 的输出比原始函数更大(或较小)。

f(n) = n*C > f(n) = n+3

而且是的 C = 2 会这样做,因此我们的函数 f(n) = n 可以是我们函数 f(x) = x + 3 的顶部界限。

相同的下限:

f(n) = n*C < f(n) = n+3

C = 2 會這樣做