我更喜欢尽可能少的正式定义和简单的数学。


当前回答


actualAlgorithmTime(N) ∈ O(bound(N))
                                       e.g. "time to mergesort N elements 
                                             is O(N log(N))"

actualAlgorithmTime(N)                 e.g. "mergesort_duration(N)       "
────────────────────── < constant            ───────────────────── < 2.5 
       bound(N)                                    N log(N)         



#handshakes(N)
────────────── ≈ 1/2
     N²

    N²/2 - N/2         (N²)/2   N/2         1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞     N²       N→∞     N²     N²      N→∞  1
                               ┕━━━┙
             this is 0 in the limit of N→∞:
             graph it, or plug in a really large number for N


这让我们做出这样的陈述......

我把时间的倍增到一个O(N)(“线性时间”)算法所需要的时间。


某些无形上级的算法(例如,非比较的O(N log(N))类型)可能具有如此大的恒定的因素(例如,100000*N log(N))),或相对较大的顶部,如O(N log(N))与隐藏的+100*N,它们很少值得使用,即使在“大数据”。



for(i=0; i<A; i++)        // A * ...
    some O(1) operation     // 1

--> A*1 --> O(A) time

visualization:

|<------ A ------->|
1 2 3 4 5 x x ... x

other languages, multiplying orders of growth:
  javascript, O(A) time and space
    someListOfSizeA.map((x,i) => [x,i])               
  python, O(rows*cols) time and space
    [[r*c for c in range(cols)] for r in range(rows)]

for every x in listOfSizeA:   // A * (...
    some O(1) operation         // 1
    some O(B) operation         // B
    for every y in listOfSizeC: // C * (...
        some O(1) operation       // 1))

--> O(A*(1 + B + C))
    O(A*(B+C))        (1 is dwarfed)

visualization:

|<------ A ------->|
1 x x x x x x ... x

2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B  <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v

x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C  <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v

例子3:

function nSquaredFunction(n) {
    total = 0
    for i in 1..n:        // N *
        for j in 1..n:      // N *
            total += i*k      // 1
    return total
}
// O(n^2)

function nCubedFunction(a) {
    for i in 1..n:                // A *
        print(nSquaredFunction(a))  // A^2
}
// O(a^3)

如果我们做一些有点复杂的事情,你可能仍然能够视觉地想象正在发生的事情:

for x in range(A):
    for y in range(1..x):
        simpleOperation(x*y)

x x x x x x x x x x |
x x x x x x x x x   |
x x x x x x x x     |
x x x x x x x       |
x x x x x x         |
x x x x x           |
x x x x             |
x x x               |
x x                 |
x___________________|

<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x

<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x

   <----------------------------- N ----------------------------->
 ^  x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
 |  x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
 |  x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
 v  x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x

[myDictionary.has(x) for x in listOfSizeA]
 \----- O(1) ------/    

--> A*1 --> O(A)


混合和中型案例复杂性

(请参见中间案例和折扣分析之间的差异,如果您对此主题感兴趣。




数学 Addenda

其他回答

大 O 描述了一个功能的增长行为上限,例如一个程序的运行时间,当输入变得大。

例子:

O(n):如果我翻倍输入大小,运行时间将翻倍O(n2):如果输入大小将翻倍运行时间四倍O(log n):如果输入大小翻倍运行时间将增加一倍O(2n):如果输入大小增加一倍,运行时间将翻倍

输入尺寸通常是比特所需的空间来代表输入。

什么是清晰的英语解释大O? 尽可能少的正式定义和简单的数学。

一个简单的英语解释需要Big-O评分:

当我们编程时,我们试图解决一个问题. 我们编码的称为算法. 大 O 评级允许我们以标准的方式比较我们算法的最糟糕的案例性能. 硬件特征随着时间的推移而变化,硬件的改进可以减少运行算法需要的时间。

英文片名 What Big O Notation 是:

不是所有的算法运行相同的时间,并且可以根据输入中的项目数量而变化,我们将称之为n. 基于这一点,我们将考虑最糟糕的案例分析,或者运行时间的上限,因为n 变得更大和更大。

定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。

当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。

例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。

void Function1(List<string> data)
{
string str = data[0];
}

void Function2(List<string> data)
        {
            foreach(string str in data)
            {
                if (str == "shiv")
                {
                    return;
                }
            }
        }

因此,通过查看Big O评级,我们分类算法的好和坏区域。

此分類上一篇

https://www.youtube.com/watch?v=k6kxtzICG_g

EDIT:快注,这几乎是令人困惑的Big O评分(这是一个上线)与Theta评分(这是一个上线和下线)。在我的经验中,这实际上是非学术设置讨论的典型。

在一个句子中:随着你的工作的规模上升,完成工作需要多长时间?

“大O”评分的一个重要方面是,它不会说哪个算法会更快到一个特定的尺寸。 采取一个字符串(字符串,整体值)对一系列对(字符串,整体值)。 是否更快地找到字符串中的关键或字符串中的元素,基于字符串? (即字符串, “找到字符串部分与特定的关键相匹配的第一个元素” ) 字符串是基因。

f(x) = k(x)g(x) k 与 a(如果 a = +∞,这意味着有 N 和 M 等数,以至于每个 x > N 的, < M 等数。

sin x = O(x) when x → 0. sin x = O(1) when x → +∞, x2 + x = O(x) when x → 0, x2 + x = O(x2) when x → +∞, ln(x) = o(x) = O(x) when x → +∞。

更多例子