我更喜欢尽可能少的正式定义和简单的数学。


当前回答


actualAlgorithmTime(N) ∈ O(bound(N))
                                       e.g. "time to mergesort N elements 
                                             is O(N log(N))"

actualAlgorithmTime(N)                 e.g. "mergesort_duration(N)       "
────────────────────── < constant            ───────────────────── < 2.5 
       bound(N)                                    N log(N)         



#handshakes(N)
────────────── ≈ 1/2
     N²

    N²/2 - N/2         (N²)/2   N/2         1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞     N²       N→∞     N²     N²      N→∞  1
                               ┕━━━┙
             this is 0 in the limit of N→∞:
             graph it, or plug in a really large number for N


这让我们做出这样的陈述......

我把时间的倍增到一个O(N)(“线性时间”)算法所需要的时间。


某些无形上级的算法(例如,非比较的O(N log(N))类型)可能具有如此大的恒定的因素(例如,100000*N log(N))),或相对较大的顶部,如O(N log(N))与隐藏的+100*N,它们很少值得使用,即使在“大数据”。



for(i=0; i<A; i++)        // A * ...
    some O(1) operation     // 1

--> A*1 --> O(A) time

visualization:

|<------ A ------->|
1 2 3 4 5 x x ... x

other languages, multiplying orders of growth:
  javascript, O(A) time and space
    someListOfSizeA.map((x,i) => [x,i])               
  python, O(rows*cols) time and space
    [[r*c for c in range(cols)] for r in range(rows)]

for every x in listOfSizeA:   // A * (...
    some O(1) operation         // 1
    some O(B) operation         // B
    for every y in listOfSizeC: // C * (...
        some O(1) operation       // 1))

--> O(A*(1 + B + C))
    O(A*(B+C))        (1 is dwarfed)

visualization:

|<------ A ------->|
1 x x x x x x ... x

2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B  <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v

x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C  <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v

例子3:

function nSquaredFunction(n) {
    total = 0
    for i in 1..n:        // N *
        for j in 1..n:      // N *
            total += i*k      // 1
    return total
}
// O(n^2)

function nCubedFunction(a) {
    for i in 1..n:                // A *
        print(nSquaredFunction(a))  // A^2
}
// O(a^3)

如果我们做一些有点复杂的事情,你可能仍然能够视觉地想象正在发生的事情:

for x in range(A):
    for y in range(1..x):
        simpleOperation(x*y)

x x x x x x x x x x |
x x x x x x x x x   |
x x x x x x x x     |
x x x x x x x       |
x x x x x x         |
x x x x x           |
x x x x             |
x x x               |
x x                 |
x___________________|

<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x

<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x

   <----------------------------- N ----------------------------->
 ^  x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
 |  x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
 |  x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
 v  x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x

[myDictionary.has(x) for x in listOfSizeA]
 \----- O(1) ------/    

--> A*1 --> O(A)


混合和中型案例复杂性

(请参见中间案例和折扣分析之间的差异,如果您对此主题感兴趣。




数学 Addenda

其他回答

大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。

要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。

换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。

我不确定我正在进一步贡献这个主题,但我仍然认为我会分享:我曾经发现这个博客帖子有几个非常有用的(也许非常基本的)解释和例子关于Big O:

通过例子,这有助于在我的<unk>子像<unk>子一样的喉<unk>中获得细微的基本,所以我认为这是一个相当下载10分钟的阅读,让你走在正确的方向。

有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。

此分類上一篇

大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。

Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。

这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。

此外,同意上述所有详细答案,希望这有助于!!!

预告片

算法:解决问题的程序/公式


如何分析算法,如何比较算法?

例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。

Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。

三个关键点:

比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析

空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。