我更喜欢尽可能少的正式定义和简单的数学。


当前回答

大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。

要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。

换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。

其他回答

大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。

Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。

这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。

此外,同意上述所有详细答案,希望这有助于!!!

要做一个字面类似,你不关心跑者能跑到100米,甚至跑到5K的速度,你更关心马拉松人,最好是超级马拉松人(除此之外,跑的类似性会崩溃,你必须转向“长跑”的形象意义)。

关于所有这些数学逻辑和多元化是什么? 显然算法与这些数学术语内在相关。 如果你测量区块上的所有孩子的高度,它会花费你那么多时间,因为有孩子。 这是内在相关的 n^1 或只是 n 的概念,在那里 n 是区块上的孩子数量。

我希望我已经解释说,大O的评级仅仅是关于长期,数学与计算方式有内在的联系,数学术语和其他简化与长期有相当常见的联系。

大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。

如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。

如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。

等等等。

从(源)可以读到:

大 O 评级根据其增长率定义函数:具有相同增长率的不同函数可以使用相同的 O 评级进行代表。

在计算机科学时间复杂性和空间复杂性理论中,人们可以认为大O评级是对时间和空间的某种最糟糕情况的算法的分类。

一个算法被称为采取线性时间/空间,或者O(n)时间/空间,如果其时间/空间复杂性是O(n)。

和 O(n log n) 如:

一个算法被称为在量子时间/空间中运行,如果T(n) = O(n log^k n)为某种积极的连续 k;线性时间/空间是 k = 1(来源)的情况。

此分類上一篇

EDIT:快注,这几乎是令人困惑的Big O评分(这是一个上线)与Theta评分(这是一个上线和下线)。在我的经验中,这实际上是非学术设置讨论的典型。

在一个句子中:随着你的工作的规模上升,完成工作需要多长时间?

“大O”评分的一个重要方面是,它不会说哪个算法会更快到一个特定的尺寸。 采取一个字符串(字符串,整体值)对一系列对(字符串,整体值)。 是否更快地找到字符串中的关键或字符串中的元素,基于字符串? (即字符串, “找到字符串部分与特定的关键相匹配的第一个元素” ) 字符串是基因。