我更喜欢尽可能少的正式定义和简单的数学。


当前回答

大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。

要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。

换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。

其他回答

什么是“大O”笔记的明确英语解释?

在“大O”中,意思是“命令”(或准确地说“命令”),所以你可以从字面上得到它的想法,它是用来命令一些东西来比较它们。

“大O”做两件事:估计你的计算机适用于完成一个任务的方法的步骤多少。 方便这个过程与其他人进行比较,以确定它是否好? “大O”通过标准化评分实现上述两件事。 有七个最常用的评分O(1),这意味着你的计算机得到一个任务完成1步,这是很好的, 订单 No.1 O(logN), 平均值

此分類上一篇

请注意订单在线结束,只是为了更好地理解。有超过7个评分,如果所有可能性考虑。

概述“大O”描述算法的性能,并评估它;或者正式处理它,“大O”分类算法并标准化比较过程。

大 O 评分最常被编程者用作计算(算法)将需要多长时间完成的约定测量,表达为输入组的尺寸的函数。

在许多情况下,一个算法的“O”将落入下列情况之一:

O(1) - 完成时间是相同的,无论输入组的尺寸. 一个例子是通过指数访问一个序列元素. O(Log N) - 完成时间增加大约与 log2(n)相匹配。 例如, 1024 个元素需要大约两倍的长度为 32 个元素,因为 Log2(1024) = 10 和 Log2(32) = 5. 一个例子是找到一个元素在二进制搜索树(BST)。

大 O 忽略了没有有意义的因素,因为输入尺寸向无限增加,而函数的增长曲线,这意味着由函数添加或加倍的恒数只是被忽略。

statement;

是持久的. 声明的运行时间不会与 N 相比变化

for ( i = 0; i < N; i++ )
  statement;

for ( i = 0; i < N; i++ ) 
{
for ( j = 0; j < N; j++ )
  statement;
}

是四角形的,两条路的运行时间相当于N的平面,当N翻倍时,运行时间增加为N * N。

while ( low <= high ) 
{
 mid = ( low + high ) / 2;
 if ( target < list[mid] )
 high = mid - 1;
 else if ( target > list[mid] )
  low = mid + 1;
else break;
}

算法的运行时间是相当于 N 可以分为 2 次的次数。

void quicksort ( int list[], int left, int right )
{
  int pivot = partition ( list, left, right );
  quicksort ( list, left, pivot - 1 );
  quicksort ( list, pivot + 1, right );
}

是 N * log ( N ). 运行时间由 N 轮子(以色列或重复)组成,它们是 logarithmic,因此算法是线性和 logarithmic 的组合。

一般来说,做某些东西与每个项目在一个维度是线性的,做某些东西与每个项目在两个维度是四方的,并将工作区域分成一半是逻辑的。 还有其他大 O 测量,如圆形,曝光,和平方根,但它们不被报告为常见。 大 O 评分被描述为 O( )在哪里是测量。

查看更多: 这里

什么是“大O”笔记的明确英语解释?

我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。

因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。


Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
    int sum=0;   // here we've 1 operation
    for(int i=0; i < nums.length;i++){   // we've n times
        sum += nums[i]; // taking initialization and assignments, 3 ops
    }
    return sum;
}

在上面的算法中,让我们说你发现T(n)如下(时间复杂性):

T(n) = 3*n + 2

n= 1,000,000   -> T(1,000,000) = 3,000,002
n=1,000,000,000  -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000  -> T(10,000,000,000) = 30,000,000,002

将此类输入给另一个函数 F(n) = n

n= 1,000,000   -> F(1,000,000) = 1,000,000 
n=1,000,000,000  -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000  -> F(10,000,000,000) = 10,000,000,000

因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,

O(T(n)) = F(n)
O(T(n)) = n

从(源)可以读到:

大 O 评级根据其增长率定义函数:具有相同增长率的不同函数可以使用相同的 O 评级进行代表。

在计算机科学时间复杂性和空间复杂性理论中,人们可以认为大O评级是对时间和空间的某种最糟糕情况的算法的分类。

一个算法被称为采取线性时间/空间,或者O(n)时间/空间,如果其时间/空间复杂性是O(n)。

和 O(n log n) 如:

一个算法被称为在量子时间/空间中运行,如果T(n) = O(n log^k n)为某种积极的连续 k;线性时间/空间是 k = 1(来源)的情况。

此分類上一篇