我更喜欢尽可能少的正式定义和简单的数学。


当前回答

这是一个非常简单的解释,但我希望它涵盖了最重要的细节。

让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。

根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。

由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。

其他回答

如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:

大 O 评级告诉你解决一个无限大的问题的成本。

此外,

常见因素不可忽视

如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。

然而,任何“大”比恒定的因素都可以被检测到。


如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。

我找到了一个非常好的解释关于大O评分,特别是对于一个没有太多的数学的人。

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

在计算机科学中使用Big O评分来描述算法的性能或复杂性。Big O具体描述了最糟糕的情况,并且可以用来描述一个算法所需的执行时间或使用的空间(例如在内存或磁盘上)。

这里来了大O,告诉我们这个数学是多么艰难。

现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!

对于大 n 而言, n 平方比 n 更大。

一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。

大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。

现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!

你和我一起学到了这一切!你太聪明了!谢谢你!

现在这个工作已经完成了,让我们玩吧!


Big-O 是由程序所消耗的资源增加率,即问题例大小。

资源:可能是CPU时间,可能是最大 RAM 空间。

说问题是“找到金额”,

int Sum(int*arr,int size){
      int sum=0;
      while(size-->0) 
         sum+=arr[size]; 

      return sum;
}

problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5

说问题是“找到组合”,

    void Combination(int*arr,int size)
    { int outer=size,inner=size;
      while(outer -->0) {
        inner=size;
        while(inner -->0)
          cout<<arr[outer]<<"-"<<arr[inner]<<endl;
      }
    }

problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9

problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25

对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。

O(n2):被称为四方复杂性

1 件: 1 件 10 件: 100 件 100 件: 10,000 件

请注意,物品的数量增加了10个因素,但时间增加了102个因素。

O(n):被称为线性复杂性

1 件: 1 操作 10 件: 10 操作 100 件: 100 操作

这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。

O(1):被称为恒久复杂性

1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作

他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。