我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。
Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。
这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。
此外,同意上述所有详细答案,希望这有助于!!!
其他回答
大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。
Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。
这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。
此外,同意上述所有详细答案,希望这有助于!!!
大 O 描述了一个功能的增长行为上限,例如一个程序的运行时间,当输入变得大。
例子:
O(n):如果我翻倍输入大小,运行时间将翻倍O(n2):如果输入大小将翻倍运行时间四倍O(log n):如果输入大小翻倍运行时间将增加一倍O(2n):如果输入大小增加一倍,运行时间将翻倍
输入尺寸通常是比特所需的空间来代表输入。
测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。
好事:
邪恶的:
和那可怕的:
上述说法是一个很好的开始,但不是完全真实的。
更准确的解释(数学)
n = 输入参数数
T(n) = 表达算法运行时间的实际函数为 n 的函数
c = 常态
f(n)= 表达算法运行时间为 n 的函数的约定函数
接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。
lim T(n) ≤ c×f(n)
n→∞
方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。
T(n)∈O(n)
回到英语
基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。
Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。