我更喜欢尽可能少的正式定义和简单的数学。


当前回答

O(n2):被称为四方复杂性

1 件: 1 件 10 件: 100 件 100 件: 10,000 件

请注意,物品的数量增加了10个因素,但时间增加了102个因素。

O(n):被称为线性复杂性

1 件: 1 操作 10 件: 10 操作 100 件: 100 操作

这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。

O(1):被称为恒久复杂性

1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作

他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。

其他回答

这是一个非常简单的解释,但我希望它涵盖了最重要的细节。

让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。

根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。

由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。

如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:

大 O 评级告诉你解决一个无限大的问题的成本。

此外,

常见因素不可忽视

如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。

然而,任何“大”比恒定的因素都可以被检测到。


如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。

O(n2):被称为四方复杂性

1 件: 1 件 10 件: 100 件 100 件: 10,000 件

请注意,物品的数量增加了10个因素,但时间增加了102个因素。

O(n):被称为线性复杂性

1 件: 1 操作 10 件: 10 操作 100 件: 100 操作

这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。

O(1):被称为恒久复杂性

1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作

他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。

TLDR:Big O在数学术语中解释算法的性能。

较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。

可以从算法中最复杂的线路计算大O看。

有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:

https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)

function lineerSearch() {
  init();
  var t = timer('lineerSearch benchmark');
  var input = this.event.target.value;
  for(var i = 0;i<unsortedhaystack.length - 1;i++) {
    if (unsortedhaystack[i] === input) {
      document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
      console.log(document.getElementById('result').innerHTML);
      t.stop(); 
      return unsortedhaystack[i]; 
    }
  }
}

function binarySearch () {
  init();
  sortHaystack();
  var t = timer('binarySearch benchmark');
  var firstIndex = 0;
  var lastIndex = haystack.length-1;
  var input = this.event.target.value;

  //currently point in the half of the array
  var currentIndex = (haystack.length-1)/2 | 0;
  var iterations = 0;

  while (firstIndex <= lastIndex) {
    currentIndex = (firstIndex + lastIndex)/2 | 0;
    iterations++;
    if (haystack[currentIndex]  < input) {
      firstIndex = currentIndex + 1;
      //console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
    } else if (haystack[currentIndex] > input) {
      lastIndex = currentIndex - 1;
      //console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
    } else {
      document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
      console.log(document.getElementById('result').innerHTML);
      t.stop(); 
      return true;
    }
  }
}

大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。

Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。

这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。

此外,同意上述所有详细答案,希望这有助于!!!