我更喜欢尽可能少的正式定义和简单的数学。
当前回答
最简单的定义我可以给大 Oh 评分是:
智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。
因此,要找到一个名字给了电话号码(逆转搜索):
最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。
旅行卖家
听起来很简单吗?再想一想。
聚合物时间
另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。
其他回答
什么是“大O”笔记的明确英语解释?
我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。
因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。
Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
int sum=0; // here we've 1 operation
for(int i=0; i < nums.length;i++){ // we've n times
sum += nums[i]; // taking initialization and assignments, 3 ops
}
return sum;
}
在上面的算法中,让我们说你发现T(n)如下(时间复杂性):
T(n) = 3*n + 2
n= 1,000,000 -> T(1,000,000) = 3,000,002
n=1,000,000,000 -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000 -> T(10,000,000,000) = 30,000,000,002
将此类输入给另一个函数 F(n) = n
n= 1,000,000 -> F(1,000,000) = 1,000,000
n=1,000,000,000 -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000 -> F(10,000,000,000) = 10,000,000,000
因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,
O(T(n)) = F(n)
O(T(n)) = n
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。
如果我想向6岁的孩子解释这一点,我会开始绘制一些函数f(x) = x 和f(x) = x^2 例如,并问一个孩子哪个函数将是页面顶部的顶部函数。
TLDR:Big O在数学术语中解释算法的性能。
较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。
可以从算法中最复杂的线路计算大O看。
有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:
https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)
function lineerSearch() {
init();
var t = timer('lineerSearch benchmark');
var input = this.event.target.value;
for(var i = 0;i<unsortedhaystack.length - 1;i++) {
if (unsortedhaystack[i] === input) {
document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return unsortedhaystack[i];
}
}
}
function binarySearch () {
init();
sortHaystack();
var t = timer('binarySearch benchmark');
var firstIndex = 0;
var lastIndex = haystack.length-1;
var input = this.event.target.value;
//currently point in the half of the array
var currentIndex = (haystack.length-1)/2 | 0;
var iterations = 0;
while (firstIndex <= lastIndex) {
currentIndex = (firstIndex + lastIndex)/2 | 0;
iterations++;
if (haystack[currentIndex] < input) {
firstIndex = currentIndex + 1;
//console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
} else if (haystack[currentIndex] > input) {
lastIndex = currentIndex - 1;
//console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
} else {
document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return true;
}
}
}
actualAlgorithmTime(N) ∈ O(bound(N))
e.g. "time to mergesort N elements
is O(N log(N))"
actualAlgorithmTime(N) e.g. "mergesort_duration(N) "
────────────────────── < constant ───────────────────── < 2.5
bound(N) N log(N)
#handshakes(N)
────────────── ≈ 1/2
N²
N²/2 - N/2 (N²)/2 N/2 1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞ N² N→∞ N² N² N→∞ 1
┕━━━┙
this is 0 in the limit of N→∞:
graph it, or plug in a really large number for N
这让我们做出这样的陈述......
我把时间的倍增到一个O(N)(“线性时间”)算法所需要的时间。
某些无形上级的算法(例如,非比较的O(N log(N))类型)可能具有如此大的恒定的因素(例如,100000*N log(N))),或相对较大的顶部,如O(N log(N))与隐藏的+100*N,它们很少值得使用,即使在“大数据”。
for(i=0; i<A; i++) // A * ...
some O(1) operation // 1
--> A*1 --> O(A) time
visualization:
|<------ A ------->|
1 2 3 4 5 x x ... x
other languages, multiplying orders of growth:
javascript, O(A) time and space
someListOfSizeA.map((x,i) => [x,i])
python, O(rows*cols) time and space
[[r*c for c in range(cols)] for r in range(rows)]
for every x in listOfSizeA: // A * (...
some O(1) operation // 1
some O(B) operation // B
for every y in listOfSizeC: // C * (...
some O(1) operation // 1))
--> O(A*(1 + B + C))
O(A*(B+C)) (1 is dwarfed)
visualization:
|<------ A ------->|
1 x x x x x x ... x
2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v
x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v
例子3:
function nSquaredFunction(n) {
total = 0
for i in 1..n: // N *
for j in 1..n: // N *
total += i*k // 1
return total
}
// O(n^2)
function nCubedFunction(a) {
for i in 1..n: // A *
print(nSquaredFunction(a)) // A^2
}
// O(a^3)
如果我们做一些有点复杂的事情,你可能仍然能够视觉地想象正在发生的事情:
for x in range(A):
for y in range(1..x):
simpleOperation(x*y)
x x x x x x x x x x |
x x x x x x x x x |
x x x x x x x x |
x x x x x x x |
x x x x x x |
x x x x x |
x x x x |
x x x |
x x |
x___________________|
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x
<----------------------------- N ----------------------------->
^ x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
| x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
| x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
v x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x
[myDictionary.has(x) for x in listOfSizeA]
\----- O(1) ------/
--> A*1 --> O(A)
混合和中型案例复杂性
(请参见中间案例和折扣分析之间的差异,如果您对此主题感兴趣。
数学 Addenda
推荐文章
- 找出质数最快的算法是什么?
- 圆线段碰撞检测算法?
- 求有向图中的所有循环
- JavaScript -从当前日期开始获取一周的第一天
- 如何比较两种颜色的相似/不同
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字