我更喜欢尽可能少的正式定义和简单的数学。


当前回答


最简单的定义我可以给大 Oh 评分是:

智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。

因此,要找到一个名字给了电话号码(逆转搜索):

最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。

旅行卖家

听起来很简单吗?再想一想。

聚合物时间

另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。

其他回答


actualAlgorithmTime(N) ∈ O(bound(N))
                                       e.g. "time to mergesort N elements 
                                             is O(N log(N))"

actualAlgorithmTime(N)                 e.g. "mergesort_duration(N)       "
────────────────────── < constant            ───────────────────── < 2.5 
       bound(N)                                    N log(N)         



#handshakes(N)
────────────── ≈ 1/2
     N²

    N²/2 - N/2         (N²)/2   N/2         1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞     N²       N→∞     N²     N²      N→∞  1
                               ┕━━━┙
             this is 0 in the limit of N→∞:
             graph it, or plug in a really large number for N


这让我们做出这样的陈述......

我把时间的倍增到一个O(N)(“线性时间”)算法所需要的时间。


某些无形上级的算法(例如,非比较的O(N log(N))类型)可能具有如此大的恒定的因素(例如,100000*N log(N))),或相对较大的顶部,如O(N log(N))与隐藏的+100*N,它们很少值得使用,即使在“大数据”。



for(i=0; i<A; i++)        // A * ...
    some O(1) operation     // 1

--> A*1 --> O(A) time

visualization:

|<------ A ------->|
1 2 3 4 5 x x ... x

other languages, multiplying orders of growth:
  javascript, O(A) time and space
    someListOfSizeA.map((x,i) => [x,i])               
  python, O(rows*cols) time and space
    [[r*c for c in range(cols)] for r in range(rows)]

for every x in listOfSizeA:   // A * (...
    some O(1) operation         // 1
    some O(B) operation         // B
    for every y in listOfSizeC: // C * (...
        some O(1) operation       // 1))

--> O(A*(1 + B + C))
    O(A*(B+C))        (1 is dwarfed)

visualization:

|<------ A ------->|
1 x x x x x x ... x

2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B  <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v

x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C  <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v

例子3:

function nSquaredFunction(n) {
    total = 0
    for i in 1..n:        // N *
        for j in 1..n:      // N *
            total += i*k      // 1
    return total
}
// O(n^2)

function nCubedFunction(a) {
    for i in 1..n:                // A *
        print(nSquaredFunction(a))  // A^2
}
// O(a^3)

如果我们做一些有点复杂的事情,你可能仍然能够视觉地想象正在发生的事情:

for x in range(A):
    for y in range(1..x):
        simpleOperation(x*y)

x x x x x x x x x x |
x x x x x x x x x   |
x x x x x x x x     |
x x x x x x x       |
x x x x x x         |
x x x x x           |
x x x x             |
x x x               |
x x                 |
x___________________|

<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x

<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x

   <----------------------------- N ----------------------------->
 ^  x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
 |  x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
 |  x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
 v  x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x

[myDictionary.has(x) for x in listOfSizeA]
 \----- O(1) ------/    

--> A*1 --> O(A)


混合和中型案例复杂性

(请参见中间案例和折扣分析之间的差异,如果您对此主题感兴趣。




数学 Addenda

大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”

因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。

我的名单

比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!

為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2

我希望这就像你想要的那样简单。

这里来了大O,告诉我们这个数学是多么艰难。

现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!

对于大 n 而言, n 平方比 n 更大。

一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。

大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。

现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!

你和我一起学到了这一切!你太聪明了!谢谢你!

现在这个工作已经完成了,让我们玩吧!


我找到了一个非常好的解释关于大O评分,特别是对于一个没有太多的数学的人。

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

在计算机科学中使用Big O评分来描述算法的性能或复杂性。Big O具体描述了最糟糕的情况,并且可以用来描述一个算法所需的执行时间或使用的空间(例如在内存或磁盘上)。

假设我们正在谈论一个算法A,该算法应该做一些与数据集的尺寸n。

然后 O( <某些表达式 X 涉及 n> ) 意思,在简单的英语:

如果您在执行 A 时不幸,可能需要尽可能多的 X(n) 操作完成。

正如发生的那样,有某些功能(想想它们作为X(n))的实施,这些功能往往很常见,这些功能是众所周知的,易于比较的(例子:1、Log N、N、N^2、N!等)。

比较这些,当谈到A和其他算法时,很容易根据他们可能需要完成的操作数量排序算法。

总的来说,我们的目标将是找到或结构一个算法A,以便它有一个函数X(n)返回尽可能低的数字。