我更喜欢尽可能少的正式定义和简单的数学。
当前回答
Big-O 是由程序所消耗的资源增加率,即问题例大小。
资源:可能是CPU时间,可能是最大 RAM 空间。
说问题是“找到金额”,
int Sum(int*arr,int size){
int sum=0;
while(size-->0)
sum+=arr[size];
return sum;
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5
说问题是“找到组合”,
void Combination(int*arr,int size)
{ int outer=size,inner=size;
while(outer -->0) {
inner=size;
while(inner -->0)
cout<<arr[outer]<<"-"<<arr[inner]<<endl;
}
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25
对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。
其他回答
测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。
好事:
邪恶的:
和那可怕的:
告诉你从亚马逊订购哈利·波特:完整的8电影收藏(Blu-ray)并同时在线下载相同的电影收藏。你想测试哪种方法更快。
从实验中,我们知道在线购物的规模比在线下载更好,很重要的是要了解大O评级,因为它有助于分析算法的规模性和效率。
注意: 大 O 评级是算法最糟糕的场景,假设 O(1) 和 O(n) 是上面的例子最糟糕的场景。
参考: http://carlcheo.com/compsci
f(x) = k(x)g(x) k 与 a(如果 a = +∞,这意味着有 N 和 M 等数,以至于每个 x > N 的, < M 等数。
sin x = O(x) when x → 0. sin x = O(1) when x → +∞, x2 + x = O(x) when x → 0, x2 + x = O(x2) when x → +∞, ln(x) = o(x) = O(x) when x → +∞。
更多例子
要做一个字面类似,你不关心跑者能跑到100米,甚至跑到5K的速度,你更关心马拉松人,最好是超级马拉松人(除此之外,跑的类似性会崩溃,你必须转向“长跑”的形象意义)。
关于所有这些数学逻辑和多元化是什么? 显然算法与这些数学术语内在相关。 如果你测量区块上的所有孩子的高度,它会花费你那么多时间,因为有孩子。 这是内在相关的 n^1 或只是 n 的概念,在那里 n 是区块上的孩子数量。
我希望我已经解释说,大O的评级仅仅是关于长期,数学与计算方式有内在的联系,数学术语和其他简化与长期有相当常见的联系。
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
推荐文章
- 找出质数最快的算法是什么?
- 圆线段碰撞检测算法?
- 求有向图中的所有循环
- JavaScript -从当前日期开始获取一周的第一天
- 如何比较两种颜色的相似/不同
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字