我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
其他回答
O(n2):被称为四方复杂性
1 件: 1 件 10 件: 100 件 100 件: 10,000 件
请注意,物品的数量增加了10个因素,但时间增加了102个因素。
O(n):被称为线性复杂性
1 件: 1 操作 10 件: 10 操作 100 件: 100 操作
这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。
O(1):被称为恒久复杂性
1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作
他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。
这里来了大O,告诉我们这个数学是多么艰难。
现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!
对于大 n 而言, n 平方比 n 更大。
一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。
大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。
现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!
你和我一起学到了这一切!你太聪明了!谢谢你!
现在这个工作已经完成了,让我们玩吧!
定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。
当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。
例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。
void Function1(List<string> data)
{
string str = data[0];
}
void Function2(List<string> data)
{
foreach(string str in data)
{
if (str == "shiv")
{
return;
}
}
}
因此,通过查看Big O评级,我们分类算法的好和坏区域。
此分類上一篇
https://www.youtube.com/watch?v=k6kxtzICG_g
1(一) :
这种复杂性与O(1)相同,除非它只是稍微糟糕一点,对于所有实用目的,你可以把它视为一个非常大的连续规模。
和(n):
O(n log n):
O(n2):
它作为一个平方,在那里 n 是平方侧的长度. 这是与“网络效应”相同的增长率,在那里网络中的每个人都可以知道网络中的每个人. 增长是昂贵的. 大多数可扩展的解决方案不能使用这个复杂度的算法,而不做显著的体操。
二(二) :
当我们有一个函数,如f(n) = n+3 和我们想知道图表看起来如何喜欢,当n接近无限时,我们只是放下所有的连续和较低的顺序术语,因为它们不在乎什么时候n变得大。
常规和较低的命令时间的简单落下,正是找到下方和上方的功能的过程。
根据定义,一个函数是另一个函数的下层或上层界限,如果您可以找到一个恒定的函数,以便为每个 n 的输出比原始函数更大(或较小)。
f(n) = n*C > f(n) = n+3
而且是的 C = 2 会这样做,因此我们的函数 f(n) = n 可以是我们函数 f(x) = x + 3 的顶部界限。
相同的下限:
f(n) = n*C < f(n) = n+3
C = 2 會這樣做