我更喜欢尽可能少的正式定义和简单的数学。


当前回答

我最喜欢的英语词来描述这个概念是你为一个任务付出的代价,因为它越来越大。

既然这些常态在长期内并不重要,这种语言允许我们讨论超越我们正在运行的基础设施之外的任务,所以工厂可以到任何地方,工人可以到任何地方 - 它都是可怕的,但是工厂的大小和工人的数量是我们在长期内可以改变的事情,因为您的输入和输出增长。

由于时间和空间是经济量(即它们是有限的)在这里,它们都可以用这个语言表达。

技术笔记: 时间复杂性的一些例子 - O(n) 一般意味着如果一个问题是“n”的大小,我至少必须看到一切。 O(log n) 一般意味着我减半问题的大小,检查并重复,直到任务完成。

其他回答

大 O 在平式英语是如<=(少于或等)。当我们说为两个函数f 和 g,f = O(g) 它意味着f <= g。

但是,这并不意味着任何 n f(n) <= g(n) 事实上,它意味着 f 是增长方面低于或等于 g 的,这意味着在一个点 f(n) <= c*g(n) 之后,如果 c 是恒定的,然后一个点意味着所有 n >= n0 在那里 n0 是另一个恒定的。

算法例(Java):

public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
    for(/* each */Integer i:/* in */L)
    {
        if(i == K)
        {
            return true;
        }
    }
    
    return false;
}

算法描述:

这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。

Big-O 评分代表了复杂性(时间、空间等)的顶端。

要找到 The Big-O on Time Complexity:

计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性

还有大欧米加,它代表了最佳案例的复杂性:

最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant

O(n2):被称为四方复杂性

1 件: 1 件 10 件: 100 件 100 件: 10,000 件

请注意,物品的数量增加了10个因素,但时间增加了102个因素。

O(n):被称为线性复杂性

1 件: 1 操作 10 件: 10 操作 100 件: 100 操作

这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。

O(1):被称为恒久复杂性

1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作

他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。

测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。

好事:

邪恶的:

和那可怕的:

它切断到骨头,只提供关于算法的规模性质的信息,具体如何使用资源(思考时间或记忆)的算法规模,以回应“输入大小”。

考虑蒸汽发动机和火箭之间的差异. 它们不仅仅是相同的东西的不同品种(如说,一个Prius发动机与一个Lamborghini发动机),但它们是显著不同的类型的驱动系统,在它们的核心。