我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 评分最常被编程者用作计算(算法)将需要多长时间完成的约定测量,表达为输入组的尺寸的函数。
在许多情况下,一个算法的“O”将落入下列情况之一:
O(1) - 完成时间是相同的,无论输入组的尺寸. 一个例子是通过指数访问一个序列元素. O(Log N) - 完成时间增加大约与 log2(n)相匹配。 例如, 1024 个元素需要大约两倍的长度为 32 个元素,因为 Log2(1024) = 10 和 Log2(32) = 5. 一个例子是找到一个元素在二进制搜索树(BST)。
大 O 忽略了没有有意义的因素,因为输入尺寸向无限增加,而函数的增长曲线,这意味着由函数添加或加倍的恒数只是被忽略。
其他回答
最简单的定义我可以给大 Oh 评分是:
智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。
因此,要找到一个名字给了电话号码(逆转搜索):
最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。
旅行卖家
听起来很简单吗?再想一想。
聚合物时间
另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。
f(x) = k(x)g(x) k 与 a(如果 a = +∞,这意味着有 N 和 M 等数,以至于每个 x > N 的, < M 等数。
sin x = O(x) when x → 0. sin x = O(1) when x → +∞, x2 + x = O(x) when x → 0, x2 + x = O(x2) when x → +∞, ln(x) = o(x) = O(x) when x → +∞。
更多例子
仅仅是以快速而简单的方式表达一个算法的复杂性。 大 O 评分存在,以解释任何算法的最佳、最糟糕和平均案例时间复杂性。
否则,与这些功能工作是非常困难的,因为它们倾向于:
有太多的泡沫 - 像二进制搜索这样的算法通常运行得更快,因为序列分区工作得很好,因为 n = 2k − 1 的尺寸,因为序列分区工作得更快。 这个细节并不特别重要,但它警告我们,任何算法的准确时间复杂性功能可能非常复杂,如图2.2 所示,有很少的上下泡沫。
https://mimoza.marmara.edu.tr/~msakalli/cse706_12/SkienaTheAlgorithmDesignMan ual.pdf
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
我不确定我正在进一步贡献这个主题,但我仍然认为我会分享:我曾经发现这个博客帖子有几个非常有用的(也许非常基本的)解释和例子关于Big O:
通过例子,这有助于在我的<unk>子像<unk>子一样的喉<unk>中获得细微的基本,所以我认为这是一个相当下载10分钟的阅读,让你走在正确的方向。