我更喜欢尽可能少的正式定义和简单的数学。
当前回答
测量软件程序的速度非常困难,当我们尝试时,答案可以非常复杂,并且充满了例外和特殊案例,这是一个很大的问题,因为所有这些例外和特殊案例都令人沮丧和无助,当我们想比较两个不同的程序,以确定哪个是“最快”。
好事:
邪恶的:
和那可怕的:
其他回答
如果我想向6岁的孩子解释这一点,我会开始绘制一些函数f(x) = x 和f(x) = x^2 例如,并问一个孩子哪个函数将是页面顶部的顶部函数。
我找到了一个非常好的解释关于大O评分,特别是对于一个没有太多的数学的人。
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
在计算机科学中使用Big O评分来描述算法的性能或复杂性。Big O具体描述了最糟糕的情况,并且可以用来描述一个算法所需的执行时间或使用的空间(例如在内存或磁盘上)。
有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。
此分類上一篇
一个简单的答案可以是:
大 O 代表了这个算法可能最糟糕的时间/空间. 算法永远不会超过这个限制的空间/时间. 大 O 代表了极端情况下的时间/空间复杂性。
什么是“大O”笔记的明确英语解释?
我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。
因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。
Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
int sum=0; // here we've 1 operation
for(int i=0; i < nums.length;i++){ // we've n times
sum += nums[i]; // taking initialization and assignments, 3 ops
}
return sum;
}
在上面的算法中,让我们说你发现T(n)如下(时间复杂性):
T(n) = 3*n + 2
n= 1,000,000 -> T(1,000,000) = 3,000,002
n=1,000,000,000 -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000 -> T(10,000,000,000) = 30,000,000,002
将此类输入给另一个函数 F(n) = n
n= 1,000,000 -> F(1,000,000) = 1,000,000
n=1,000,000,000 -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000 -> F(10,000,000,000) = 10,000,000,000
因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,
O(T(n)) = F(n)
O(T(n)) = n
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 什么是“P=NP?”,为什么这是一个如此著名的问题?
- 两个长度不等的表之间的排列