我更喜欢尽可能少的正式定义和简单的数学。
当前回答
一个简单的答案可以是:
大 O 代表了这个算法可能最糟糕的时间/空间. 算法永远不会超过这个限制的空间/时间. 大 O 代表了极端情况下的时间/空间复杂性。
其他回答
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
算法例(Java):
public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
for(/* each */Integer i:/* in */L)
{
if(i == K)
{
return true;
}
}
return false;
}
算法描述:
这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。
Big-O 评分代表了复杂性(时间、空间等)的顶端。
要找到 The Big-O on Time Complexity:
计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性
还有大欧米加,它代表了最佳案例的复杂性:
最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant
什么是“大O”笔记的明确英语解释?
在“大O”中,意思是“命令”(或准确地说“命令”),所以你可以从字面上得到它的想法,它是用来命令一些东西来比较它们。
“大O”做两件事:估计你的计算机适用于完成一个任务的方法的步骤多少。 方便这个过程与其他人进行比较,以确定它是否好? “大O”通过标准化评分实现上述两件事。 有七个最常用的评分O(1),这意味着你的计算机得到一个任务完成1步,这是很好的, 订单 No.1 O(logN), 平均值
此分類上一篇
请注意订单在线结束,只是为了更好地理解。有超过7个评分,如果所有可能性考虑。
概述“大O”描述算法的性能,并评估它;或者正式处理它,“大O”分类算法并标准化比较过程。
大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。
要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。
换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。
最简单的定义我可以给大 Oh 评分是:
智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。
因此,要找到一个名字给了电话号码(逆转搜索):
最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。
旅行卖家
听起来很简单吗?再想一想。
聚合物时间
另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。
推荐文章
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 跳跃表vs.二叉搜索树