我更喜欢尽可能少的正式定义和简单的数学。


当前回答

大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”

因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。

我的名单

比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!

為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2

我希望这就像你想要的那样简单。

其他回答

定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。

当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。

例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。

void Function1(List<string> data)
{
string str = data[0];
}

void Function2(List<string> data)
        {
            foreach(string str in data)
            {
                if (str == "shiv")
                {
                    return;
                }
            }
        }

因此,通过查看Big O评级,我们分类算法的好和坏区域。

此分類上一篇

https://www.youtube.com/watch?v=k6kxtzICG_g

我不确定我正在进一步贡献这个主题,但我仍然认为我会分享:我曾经发现这个博客帖子有几个非常有用的(也许非常基本的)解释和例子关于Big O:

通过例子,这有助于在我的<unk>子像<unk>子一样的喉<unk>中获得细微的基本,所以我认为这是一个相当下载10分钟的阅读,让你走在正确的方向。

大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。

如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。

如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。

等等等。

TLDR:Big O在数学术语中解释算法的性能。

较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。

可以从算法中最复杂的线路计算大O看。

有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:

https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)

function lineerSearch() {
  init();
  var t = timer('lineerSearch benchmark');
  var input = this.event.target.value;
  for(var i = 0;i<unsortedhaystack.length - 1;i++) {
    if (unsortedhaystack[i] === input) {
      document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
      console.log(document.getElementById('result').innerHTML);
      t.stop(); 
      return unsortedhaystack[i]; 
    }
  }
}

function binarySearch () {
  init();
  sortHaystack();
  var t = timer('binarySearch benchmark');
  var firstIndex = 0;
  var lastIndex = haystack.length-1;
  var input = this.event.target.value;

  //currently point in the half of the array
  var currentIndex = (haystack.length-1)/2 | 0;
  var iterations = 0;

  while (firstIndex <= lastIndex) {
    currentIndex = (firstIndex + lastIndex)/2 | 0;
    iterations++;
    if (haystack[currentIndex]  < input) {
      firstIndex = currentIndex + 1;
      //console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
    } else if (haystack[currentIndex] > input) {
      lastIndex = currentIndex - 1;
      //console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
    } else {
      document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
      console.log(document.getElementById('result').innerHTML);
      t.stop(); 
      return true;
    }
  }
}

我最喜欢的英语词来描述这个概念是你为一个任务付出的代价,因为它越来越大。

既然这些常态在长期内并不重要,这种语言允许我们讨论超越我们正在运行的基础设施之外的任务,所以工厂可以到任何地方,工人可以到任何地方 - 它都是可怕的,但是工厂的大小和工人的数量是我们在长期内可以改变的事情,因为您的输入和输出增长。

由于时间和空间是经济量(即它们是有限的)在这里,它们都可以用这个语言表达。

技术笔记: 时间复杂性的一些例子 - O(n) 一般意味着如果一个问题是“n”的大小,我至少必须看到一切。 O(log n) 一般意味着我减半问题的大小,检查并重复,直到任务完成。