我更喜欢尽可能少的正式定义和简单的数学。
当前回答
定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。
当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。
例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。
void Function1(List<string> data)
{
string str = data[0];
}
void Function2(List<string> data)
{
foreach(string str in data)
{
if (str == "shiv")
{
return;
}
}
}
因此,通过查看Big O评级,我们分类算法的好和坏区域。
此分類上一篇
https://www.youtube.com/watch?v=k6kxtzICG_g
其他回答
actualAlgorithmTime(N) ∈ O(bound(N))
e.g. "time to mergesort N elements
is O(N log(N))"
actualAlgorithmTime(N) e.g. "mergesort_duration(N) "
────────────────────── < constant ───────────────────── < 2.5
bound(N) N log(N)
#handshakes(N)
────────────── ≈ 1/2
N²
N²/2 - N/2 (N²)/2 N/2 1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞ N² N→∞ N² N² N→∞ 1
┕━━━┙
this is 0 in the limit of N→∞:
graph it, or plug in a really large number for N
这让我们做出这样的陈述......
我把时间的倍增到一个O(N)(“线性时间”)算法所需要的时间。
某些无形上级的算法(例如,非比较的O(N log(N))类型)可能具有如此大的恒定的因素(例如,100000*N log(N))),或相对较大的顶部,如O(N log(N))与隐藏的+100*N,它们很少值得使用,即使在“大数据”。
for(i=0; i<A; i++) // A * ...
some O(1) operation // 1
--> A*1 --> O(A) time
visualization:
|<------ A ------->|
1 2 3 4 5 x x ... x
other languages, multiplying orders of growth:
javascript, O(A) time and space
someListOfSizeA.map((x,i) => [x,i])
python, O(rows*cols) time and space
[[r*c for c in range(cols)] for r in range(rows)]
for every x in listOfSizeA: // A * (...
some O(1) operation // 1
some O(B) operation // B
for every y in listOfSizeC: // C * (...
some O(1) operation // 1))
--> O(A*(1 + B + C))
O(A*(B+C)) (1 is dwarfed)
visualization:
|<------ A ------->|
1 x x x x x x ... x
2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v
x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v
例子3:
function nSquaredFunction(n) {
total = 0
for i in 1..n: // N *
for j in 1..n: // N *
total += i*k // 1
return total
}
// O(n^2)
function nCubedFunction(a) {
for i in 1..n: // A *
print(nSquaredFunction(a)) // A^2
}
// O(a^3)
如果我们做一些有点复杂的事情,你可能仍然能够视觉地想象正在发生的事情:
for x in range(A):
for y in range(1..x):
simpleOperation(x*y)
x x x x x x x x x x |
x x x x x x x x x |
x x x x x x x x |
x x x x x x x |
x x x x x x |
x x x x x |
x x x x |
x x x |
x x |
x___________________|
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x
<----------------------------- N ----------------------------->
^ x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
| x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
| x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
v x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x
[myDictionary.has(x) for x in listOfSizeA]
\----- O(1) ------/
--> A*1 --> O(A)
混合和中型案例复杂性
(请参见中间案例和折扣分析之间的差异,如果您对此主题感兴趣。
数学 Addenda
最简单的定义我可以给大 Oh 评分是:
智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。
因此,要找到一个名字给了电话号码(逆转搜索):
最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。
旅行卖家
听起来很简单吗?再想一想。
聚合物时间
另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。
告诉你从亚马逊订购哈利·波特:完整的8电影收藏(Blu-ray)并同时在线下载相同的电影收藏。你想测试哪种方法更快。
从实验中,我们知道在线购物的规模比在线下载更好,很重要的是要了解大O评级,因为它有助于分析算法的规模性和效率。
注意: 大 O 评级是算法最糟糕的场景,假设 O(1) 和 O(n) 是上面的例子最糟糕的场景。
参考: http://carlcheo.com/compsci
statement;
是持久的. 声明的运行时间不会与 N 相比变化
for ( i = 0; i < N; i++ )
statement;
for ( i = 0; i < N; i++ )
{
for ( j = 0; j < N; j++ )
statement;
}
是四角形的,两条路的运行时间相当于N的平面,当N翻倍时,运行时间增加为N * N。
while ( low <= high )
{
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
算法的运行时间是相当于 N 可以分为 2 次的次数。
void quicksort ( int list[], int left, int right )
{
int pivot = partition ( list, left, right );
quicksort ( list, left, pivot - 1 );
quicksort ( list, pivot + 1, right );
}
是 N * log ( N ). 运行时间由 N 轮子(以色列或重复)组成,它们是 logarithmic,因此算法是线性和 logarithmic 的组合。
一般来说,做某些东西与每个项目在一个维度是线性的,做某些东西与每个项目在两个维度是四方的,并将工作区域分成一半是逻辑的。 还有其他大 O 测量,如圆形,曝光,和平方根,但它们不被报告为常见。 大 O 评分被描述为 O( )在哪里是测量。
查看更多: 这里
EDIT:快注,这几乎是令人困惑的Big O评分(这是一个上线)与Theta评分(这是一个上线和下线)。在我的经验中,这实际上是非学术设置讨论的典型。
在一个句子中:随着你的工作的规模上升,完成工作需要多长时间?
“大O”评分的一个重要方面是,它不会说哪个算法会更快到一个特定的尺寸。 采取一个字符串(字符串,整体值)对一系列对(字符串,整体值)。 是否更快地找到字符串中的关键或字符串中的元素,基于字符串? (即字符串, “找到字符串部分与特定的关键相匹配的第一个元素” ) 字符串是基因。