我更喜欢尽可能少的正式定义和简单的数学。


当前回答

如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:

大 O 评级告诉你解决一个无限大的问题的成本。

此外,

常见因素不可忽视

如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。

然而,任何“大”比恒定的因素都可以被检测到。


如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。

其他回答


最简单的定义我可以给大 Oh 评分是:

智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。

因此,要找到一个名字给了电话号码(逆转搜索):

最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。

旅行卖家

听起来很简单吗?再想一想。

聚合物时间

另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。

算法例(Java):

public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
    for(/* each */Integer i:/* in */L)
    {
        if(i == K)
        {
            return true;
        }
    }
    
    return false;
}

算法描述:

这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。

Big-O 评分代表了复杂性(时间、空间等)的顶端。

要找到 The Big-O on Time Complexity:

计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性

还有大欧米加,它代表了最佳案例的复杂性:

最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant

TLDR:Big O在数学术语中解释算法的性能。

较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。

可以从算法中最复杂的线路计算大O看。

有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:

https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)

function lineerSearch() {
  init();
  var t = timer('lineerSearch benchmark');
  var input = this.event.target.value;
  for(var i = 0;i<unsortedhaystack.length - 1;i++) {
    if (unsortedhaystack[i] === input) {
      document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
      console.log(document.getElementById('result').innerHTML);
      t.stop(); 
      return unsortedhaystack[i]; 
    }
  }
}

function binarySearch () {
  init();
  sortHaystack();
  var t = timer('binarySearch benchmark');
  var firstIndex = 0;
  var lastIndex = haystack.length-1;
  var input = this.event.target.value;

  //currently point in the half of the array
  var currentIndex = (haystack.length-1)/2 | 0;
  var iterations = 0;

  while (firstIndex <= lastIndex) {
    currentIndex = (firstIndex + lastIndex)/2 | 0;
    iterations++;
    if (haystack[currentIndex]  < input) {
      firstIndex = currentIndex + 1;
      //console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
    } else if (haystack[currentIndex] > input) {
      lastIndex = currentIndex - 1;
      //console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
    } else {
      document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
      console.log(document.getElementById('result').innerHTML);
      t.stop(); 
      return true;
    }
  }
}

大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。

如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。

如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。

等等等。

大 O 描述一类功能。

它描述了大输入值的快速功能的增长方式。

对于一个特定的函数f,O(f)分解了所有函数g(n),您可以找到一个n0和一个恒定的c,以便与n>=n0的g(n)的所有值都低于或相当于c*f(n)。

在较少的数学词语中,O(f)是一组函数,即所有函数,从某些值 n0 向前,增长缓慢或像 f 一样快。

如果 f(n) = n 那么

g(n) = 3n 是 O(f) 。 因为恒定的因素不重要 h(n) = n+1000 是 O(f) 因为它可能比所有值小于 1000 但对于大 O 只有大输入物质。

然而,i(n) = n^2不在O(f)中,因为一个四方函数比一个线性函数增长得更快。