我更喜欢尽可能少的正式定义和简单的数学。


当前回答

什么是清晰的英语解释大O? 尽可能少的正式定义和简单的数学。

一个简单的英语解释需要Big-O评分:

当我们编程时,我们试图解决一个问题. 我们编码的称为算法. 大 O 评级允许我们以标准的方式比较我们算法的最糟糕的案例性能. 硬件特征随着时间的推移而变化,硬件的改进可以减少运行算法需要的时间。

英文片名 What Big O Notation 是:

不是所有的算法运行相同的时间,并且可以根据输入中的项目数量而变化,我们将称之为n. 基于这一点,我们将考虑最糟糕的案例分析,或者运行时间的上限,因为n 变得更大和更大。

其他回答

大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”

因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。

我的名单

比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!

為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2

我希望这就像你想要的那样简单。

这里来了大O,告诉我们这个数学是多么艰难。

现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!

对于大 n 而言, n 平方比 n 更大。

一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。

大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。

现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!

你和我一起学到了这一切!你太聪明了!谢谢你!

现在这个工作已经完成了,让我们玩吧!


大 O 评分是描述一个算法的空间或运行时间的上限的一种方式. n 是问题的元素数量(即序列的尺寸,树上的节点数量等) 我们有兴趣描述运行时间,因为 n 变得大。

要说二进制搜索有运行时间的O(登录)是说有某些恒定的c,你可以增加登录(n)通过它将总是比运行时间的二进制搜索。

换句话说,g(n)是你的算法的运行时间,我们说g(n) = O(f(n))当g(n) <=c*f(n)当n > k,当c和k是某些恒定的。

我最喜欢的英语词来描述这个概念是你为一个任务付出的代价,因为它越来越大。

既然这些常态在长期内并不重要,这种语言允许我们讨论超越我们正在运行的基础设施之外的任务,所以工厂可以到任何地方,工人可以到任何地方 - 它都是可怕的,但是工厂的大小和工人的数量是我们在长期内可以改变的事情,因为您的输入和输出增长。

由于时间和空间是经济量(即它们是有限的)在这里,它们都可以用这个语言表达。

技术笔记: 时间复杂性的一些例子 - O(n) 一般意味着如果一个问题是“n”的大小,我至少必须看到一切。 O(log n) 一般意味着我减半问题的大小,检查并重复,直到任务完成。

我不确定我正在进一步贡献这个主题,但我仍然认为我会分享:我曾经发现这个博客帖子有几个非常有用的(也许非常基本的)解释和例子关于Big O:

通过例子,这有助于在我的<unk>子像<unk>子一样的喉<unk>中获得细微的基本,所以我认为这是一个相当下载10分钟的阅读,让你走在正确的方向。