我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。
其他回答
告诉你从亚马逊订购哈利·波特:完整的8电影收藏(Blu-ray)并同时在线下载相同的电影收藏。你想测试哪种方法更快。
从实验中,我们知道在线购物的规模比在线下载更好,很重要的是要了解大O评级,因为它有助于分析算法的规模性和效率。
注意: 大 O 评级是算法最糟糕的场景,假设 O(1) 和 O(n) 是上面的例子最糟糕的场景。
参考: http://carlcheo.com/compsci
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。
有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。
此分類上一篇
定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。
当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。
例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。
void Function1(List<string> data)
{
string str = data[0];
}
void Function2(List<string> data)
{
foreach(string str in data)
{
if (str == "shiv")
{
return;
}
}
}
因此,通过查看Big O评级,我们分类算法的好和坏区域。
此分類上一篇
https://www.youtube.com/watch?v=k6kxtzICG_g
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 什么是“P=NP?”,为什么这是一个如此著名的问题?
- 两个长度不等的表之间的排列