我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。
其他回答
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
statement;
是持久的. 声明的运行时间不会与 N 相比变化
for ( i = 0; i < N; i++ )
statement;
for ( i = 0; i < N; i++ )
{
for ( j = 0; j < N; j++ )
statement;
}
是四角形的,两条路的运行时间相当于N的平面,当N翻倍时,运行时间增加为N * N。
while ( low <= high )
{
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
算法的运行时间是相当于 N 可以分为 2 次的次数。
void quicksort ( int list[], int left, int right )
{
int pivot = partition ( list, left, right );
quicksort ( list, left, pivot - 1 );
quicksort ( list, pivot + 1, right );
}
是 N * log ( N ). 运行时间由 N 轮子(以色列或重复)组成,它们是 logarithmic,因此算法是线性和 logarithmic 的组合。
一般来说,做某些东西与每个项目在一个维度是线性的,做某些东西与每个项目在两个维度是四方的,并将工作区域分成一半是逻辑的。 还有其他大 O 测量,如圆形,曝光,和平方根,但它们不被报告为常见。 大 O 评分被描述为 O( )在哪里是测量。
查看更多: 这里
定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。
当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。
例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。
void Function1(List<string> data)
{
string str = data[0];
}
void Function2(List<string> data)
{
foreach(string str in data)
{
if (str == "shiv")
{
return;
}
}
}
因此,通过查看Big O评级,我们分类算法的好和坏区域。
此分類上一篇
https://www.youtube.com/watch?v=k6kxtzICG_g
如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:
大 O 评级告诉你解决一个无限大的问题的成本。
此外,
常见因素不可忽视
如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。
然而,任何“大”比恒定的因素都可以被检测到。
如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。
推荐文章
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 在常数平摊时间O(1)中将一个对象追加到R中的列表?
- 跳跃表vs.二叉搜索树