我更喜欢尽可能少的正式定义和简单的数学。
当前回答
上述说法是一个很好的开始,但不是完全真实的。
更准确的解释(数学)
n = 输入参数数
T(n) = 表达算法运行时间的实际函数为 n 的函数
c = 常态
f(n)= 表达算法运行时间为 n 的函数的约定函数
接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。
lim T(n) ≤ c×f(n)
n→∞
方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。
T(n)∈O(n)
回到英语
基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。
Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。
其他回答
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。
actualAlgorithmTime(N) ∈ O(bound(N))
e.g. "time to mergesort N elements
is O(N log(N))"
actualAlgorithmTime(N) e.g. "mergesort_duration(N) "
────────────────────── < constant ───────────────────── < 2.5
bound(N) N log(N)
#handshakes(N)
────────────── ≈ 1/2
N²
N²/2 - N/2 (N²)/2 N/2 1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞ N² N→∞ N² N² N→∞ 1
┕━━━┙
this is 0 in the limit of N→∞:
graph it, or plug in a really large number for N
这让我们做出这样的陈述......
我把时间的倍增到一个O(N)(“线性时间”)算法所需要的时间。
某些无形上级的算法(例如,非比较的O(N log(N))类型)可能具有如此大的恒定的因素(例如,100000*N log(N))),或相对较大的顶部,如O(N log(N))与隐藏的+100*N,它们很少值得使用,即使在“大数据”。
for(i=0; i<A; i++) // A * ...
some O(1) operation // 1
--> A*1 --> O(A) time
visualization:
|<------ A ------->|
1 2 3 4 5 x x ... x
other languages, multiplying orders of growth:
javascript, O(A) time and space
someListOfSizeA.map((x,i) => [x,i])
python, O(rows*cols) time and space
[[r*c for c in range(cols)] for r in range(rows)]
for every x in listOfSizeA: // A * (...
some O(1) operation // 1
some O(B) operation // B
for every y in listOfSizeC: // C * (...
some O(1) operation // 1))
--> O(A*(1 + B + C))
O(A*(B+C)) (1 is dwarfed)
visualization:
|<------ A ------->|
1 x x x x x x ... x
2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v
x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v
例子3:
function nSquaredFunction(n) {
total = 0
for i in 1..n: // N *
for j in 1..n: // N *
total += i*k // 1
return total
}
// O(n^2)
function nCubedFunction(a) {
for i in 1..n: // A *
print(nSquaredFunction(a)) // A^2
}
// O(a^3)
如果我们做一些有点复杂的事情,你可能仍然能够视觉地想象正在发生的事情:
for x in range(A):
for y in range(1..x):
simpleOperation(x*y)
x x x x x x x x x x |
x x x x x x x x x |
x x x x x x x x |
x x x x x x x |
x x x x x x |
x x x x x |
x x x x |
x x x |
x x |
x___________________|
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x
<----------------------------- N ----------------------------->
^ x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
| x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
| x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
v x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x
[myDictionary.has(x) for x in listOfSizeA]
\----- O(1) ------/
--> A*1 --> O(A)
混合和中型案例复杂性
(请参见中间案例和折扣分析之间的差异,如果您对此主题感兴趣。
数学 Addenda
我找到了一个非常好的解释关于大O评分,特别是对于一个没有太多的数学的人。
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
在计算机科学中使用Big O评分来描述算法的性能或复杂性。Big O具体描述了最糟糕的情况,并且可以用来描述一个算法所需的执行时间或使用的空间(例如在内存或磁盘上)。
有几个很棒的答案已经发布,但我希望以不同的方式做出贡献. 如果你想看到发生的一切,你可以假设一个编辑器可以在 ~1sec 中完成近10^8操作. 如果输入在10^8中,你可能想设计一个算法,以线性方式运作(如一个不需要运行)。
此分類上一篇
如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:
大 O 评级告诉你解决一个无限大的问题的成本。
此外,
常见因素不可忽视
如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。
然而,任何“大”比恒定的因素都可以被检测到。
如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。
推荐文章
- 找出质数最快的算法是什么?
- 圆线段碰撞检测算法?
- 求有向图中的所有循环
- JavaScript -从当前日期开始获取一周的第一天
- 如何比较两种颜色的相似/不同
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字