我更喜欢尽可能少的正式定义和简单的数学。


当前回答

我找到了一个非常好的解释关于大O评分,特别是对于一个没有太多的数学的人。

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

在计算机科学中使用Big O评分来描述算法的性能或复杂性。Big O具体描述了最糟糕的情况,并且可以用来描述一个算法所需的执行时间或使用的空间(例如在内存或磁盘上)。

其他回答

大 O 描述了一个功能的增长行为上限,例如一个程序的运行时间,当输入变得大。

例子:

O(n):如果我翻倍输入大小,运行时间将翻倍O(n2):如果输入大小将翻倍运行时间四倍O(log n):如果输入大小翻倍运行时间将增加一倍O(2n):如果输入大小增加一倍,运行时间将翻倍

输入尺寸通常是比特所需的空间来代表输入。

预告片

算法:解决问题的程序/公式


如何分析算法,如何比较算法?

例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。

Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。

三个关键点:

比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析

空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。

大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。

如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。

如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。

等等等。


最简单的定义我可以给大 Oh 评分是:

智者可能已经意识到,我们可以表达操作的数量如:n2 + 2n. 但是,正如你从我们的例子中看到的两个数字的百万数字左右,第二个术语(2n)变得毫无意义(计算为0.0002%的总操作在这个阶段)。

因此,要找到一个名字给了电话号码(逆转搜索):

最佳案例:O(1);预期案例:O(n)(为500,000);最糟糕案例:O(n)(为1000,000)。

旅行卖家

听起来很简单吗?再想一想。

聚合物时间

另一个我想快速提到的是,任何具有O(na)复杂性的算法都说具有多元复杂性,或者在多元时间可溶解。

这里来了大O,告诉我们这个数学是多么艰难。

现在他们要求我添加一个到十个!为什么我会这样做?我不想添加一个到六个?添加一个到十个......好......这会更难!

对于大 n 而言, n 平方比 n 更大。

一个:我选择一张卡在我们现在工作的地板部分,你可以为我选择一个,如果你愿意(第一次我们这样做,“我们现在工作的地板部分”是整个地板,当然。

大 O 告诉我们:这个类型需要 O(n log n) 工作完成,在中间情况下。

现在你知道我的朋友,大O,他帮助我们做不到工作,如果你知道大O,你也可以做不到工作!

你和我一起学到了这一切!你太聪明了!谢谢你!

现在这个工作已经完成了,让我们玩吧!