我更喜欢尽可能少的正式定义和简单的数学。
当前回答
f(x) = k(x)g(x) k 与 a(如果 a = +∞,这意味着有 N 和 M 等数,以至于每个 x > N 的, < M 等数。
sin x = O(x) when x → 0. sin x = O(1) when x → +∞, x2 + x = O(x) when x → 0, x2 + x = O(x2) when x → +∞, ln(x) = o(x) = O(x) when x → +∞。
更多例子
其他回答
什么是“大O”笔记的明确英语解释?
我想强调“大O”评分的驱动动力是一件事,当算法的输入尺寸变得太大时,算法的某些部分(即恒数、比例、术语)的方程式描述算法的尺寸变得如此无意义,以至于我们忽略它们。
因此,如果输入尺寸不太大,那么“大O”评分(上限)的想法将毫无意义。
Lets say you want to quantify the performance of the following algorithm
int sumArray (int[] nums){
int sum=0; // here we've 1 operation
for(int i=0; i < nums.length;i++){ // we've n times
sum += nums[i]; // taking initialization and assignments, 3 ops
}
return sum;
}
在上面的算法中,让我们说你发现T(n)如下(时间复杂性):
T(n) = 3*n + 2
n= 1,000,000 -> T(1,000,000) = 3,000,002
n=1,000,000,000 -> T(1,000,000,000) = 3,000,000,002
n=10,000,000,000 -> T(10,000,000,000) = 30,000,000,002
将此类输入给另一个函数 F(n) = n
n= 1,000,000 -> F(1,000,000) = 1,000,000
n=1,000,000,000 -> F(1,000,000,000) = 1,000,000,000
n=10,000,000,000 -> F(10,000,000,000) = 10,000,000,000
因为你可以看到输入尺寸变得太大,T(n)大约相当于或接近F(n),所以连续2和比例3变得太不重要,现在大O“评级的想法来了,
O(T(n)) = F(n)
O(T(n)) = n
大 O 在平式英语是如<=(少于或等)。当我们说为两个函数f 和 g,f = O(g) 它意味着f <= g。
但是,这并不意味着任何 n f(n) <= g(n) 事实上,它意味着 f 是增长方面低于或等于 g 的,这意味着在一个点 f(n) <= c*g(n) 之后,如果 c 是恒定的,然后一个点意味着所有 n >= n0 在那里 n0 是另一个恒定的。
大 O 描述一类功能。
它描述了大输入值的快速功能的增长方式。
对于一个特定的函数f,O(f)分解了所有函数g(n),您可以找到一个n0和一个恒定的c,以便与n>=n0的g(n)的所有值都低于或相当于c*f(n)。
在较少的数学词语中,O(f)是一组函数,即所有函数,从某些值 n0 向前,增长缓慢或像 f 一样快。
如果 f(n) = n 那么
g(n) = 3n 是 O(f) 。 因为恒定的因素不重要 h(n) = n+1000 是 O(f) 因为它可能比所有值小于 1000 但对于大 O 只有大输入物质。
然而,i(n) = n^2不在O(f)中,因为一个四方函数比一个线性函数增长得更快。
TLDR:Big O在数学术语中解释算法的性能。
较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。
可以从算法中最复杂的线路计算大O看。
有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:
https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)
function lineerSearch() {
init();
var t = timer('lineerSearch benchmark');
var input = this.event.target.value;
for(var i = 0;i<unsortedhaystack.length - 1;i++) {
if (unsortedhaystack[i] === input) {
document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return unsortedhaystack[i];
}
}
}
function binarySearch () {
init();
sortHaystack();
var t = timer('binarySearch benchmark');
var firstIndex = 0;
var lastIndex = haystack.length-1;
var input = this.event.target.value;
//currently point in the half of the array
var currentIndex = (haystack.length-1)/2 | 0;
var iterations = 0;
while (firstIndex <= lastIndex) {
currentIndex = (firstIndex + lastIndex)/2 | 0;
iterations++;
if (haystack[currentIndex] < input) {
firstIndex = currentIndex + 1;
//console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
} else if (haystack[currentIndex] > input) {
lastIndex = currentIndex - 1;
//console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
} else {
document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return true;
}
}
}
定义 : 大 O 评级是指如果数据输入增加,算法性能将如何表现的评级。
当我们谈论算法时,有3个重要柱子 算法输入、输出和处理 大 O 是象征性的评分,如果数据输入增加到什么速度,算法处理的性能将有所不同。
例如,请参见下面的函数“函数1”,该函数收集并在第一个记录中进行处理,现在该函数的性能将是相同的,无论您放置1000、10万或100000记录。
void Function1(List<string> data)
{
string str = data[0];
}
void Function2(List<string> data)
{
foreach(string str in data)
{
if (str == "shiv")
{
return;
}
}
}
因此,通过查看Big O评级,我们分类算法的好和坏区域。
此分類上一篇
https://www.youtube.com/watch?v=k6kxtzICG_g