我更喜欢尽可能少的正式定义和简单的数学。
当前回答
1(一) :
这种复杂性与O(1)相同,除非它只是稍微糟糕一点,对于所有实用目的,你可以把它视为一个非常大的连续规模。
和(n):
O(n log n):
O(n2):
它作为一个平方,在那里 n 是平方侧的长度. 这是与“网络效应”相同的增长率,在那里网络中的每个人都可以知道网络中的每个人. 增长是昂贵的. 大多数可扩展的解决方案不能使用这个复杂度的算法,而不做显著的体操。
二(二) :
其他回答
statement;
是持久的. 声明的运行时间不会与 N 相比变化
for ( i = 0; i < N; i++ )
statement;
for ( i = 0; i < N; i++ )
{
for ( j = 0; j < N; j++ )
statement;
}
是四角形的,两条路的运行时间相当于N的平面,当N翻倍时,运行时间增加为N * N。
while ( low <= high )
{
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
算法的运行时间是相当于 N 可以分为 2 次的次数。
void quicksort ( int list[], int left, int right )
{
int pivot = partition ( list, left, right );
quicksort ( list, left, pivot - 1 );
quicksort ( list, pivot + 1, right );
}
是 N * log ( N ). 运行时间由 N 轮子(以色列或重复)组成,它们是 logarithmic,因此算法是线性和 logarithmic 的组合。
一般来说,做某些东西与每个项目在一个维度是线性的,做某些东西与每个项目在两个维度是四方的,并将工作区域分成一半是逻辑的。 还有其他大 O 测量,如圆形,曝光,和平方根,但它们不被报告为常见。 大 O 评分被描述为 O( )在哪里是测量。
查看更多: 这里
Big-O 是由程序所消耗的资源增加率,即问题例大小。
资源:可能是CPU时间,可能是最大 RAM 空间。
说问题是“找到金额”,
int Sum(int*arr,int size){
int sum=0;
while(size-->0)
sum+=arr[size];
return sum;
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5
说问题是“找到组合”,
void Combination(int*arr,int size)
{ int outer=size,inner=size;
while(outer -->0) {
inner=size;
while(inner -->0)
cout<<arr[outer]<<"-"<<arr[inner]<<endl;
}
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25
对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。
大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。
Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。
这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。
此外,同意上述所有详细答案,希望这有助于!!!
TLDR:Big O在数学术语中解释算法的性能。
较慢的算法倾向于在 n 运行到 x 或多个,取决于它的深度,而更快的,如二进制搜索运行在 O(log n),这使得它运行更快,因为数据集变得更大。
可以从算法中最复杂的线路计算大O看。
有了小型或未分类的数据集,Big O 可能令人惊讶,因为 n log n 复杂性算法如二进制搜索可以缓慢较小的或未分类的集,为一个简单的运行例子线性搜索与二进制搜索,请参见我的JavaScript例子:
https://codepen.io/serdarsenay/pen/XELWqN?editors=1011(下面的算法)
function lineerSearch() {
init();
var t = timer('lineerSearch benchmark');
var input = this.event.target.value;
for(var i = 0;i<unsortedhaystack.length - 1;i++) {
if (unsortedhaystack[i] === input) {
document.getElementById('result').innerHTML = 'result is... "' + unsortedhaystack[i] + '", on index: ' + i + ' of the unsorted array. Found' + ' within ' + i + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return unsortedhaystack[i];
}
}
}
function binarySearch () {
init();
sortHaystack();
var t = timer('binarySearch benchmark');
var firstIndex = 0;
var lastIndex = haystack.length-1;
var input = this.event.target.value;
//currently point in the half of the array
var currentIndex = (haystack.length-1)/2 | 0;
var iterations = 0;
while (firstIndex <= lastIndex) {
currentIndex = (firstIndex + lastIndex)/2 | 0;
iterations++;
if (haystack[currentIndex] < input) {
firstIndex = currentIndex + 1;
//console.log(currentIndex + " added, fI:"+firstIndex+", lI: "+lastIndex);
} else if (haystack[currentIndex] > input) {
lastIndex = currentIndex - 1;
//console.log(currentIndex + " substracted, fI:"+firstIndex+", lI: "+lastIndex);
} else {
document.getElementById('result').innerHTML = 'result is... "' + haystack[currentIndex] + '", on index: ' + currentIndex + ' of the sorted array. Found' + ' within ' + iterations + ' iterations';
console.log(document.getElementById('result').innerHTML);
t.stop();
return true;
}
}
}
O(n2):被称为四方复杂性
1 件: 1 件 10 件: 100 件 100 件: 10,000 件
请注意,物品的数量增加了10个因素,但时间增加了102个因素。
O(n):被称为线性复杂性
1 件: 1 操作 10 件: 10 操作 100 件: 100 操作
这一次,元素的数量增加了10个因素,所以时间n=10,所以O(n)的规模因素是10。
O(1):被称为恒久复杂性
1 件: 1 操作 10 件: 2 操作 100 件: 3 操作 1000 件: 4 操作 10,000 件: 5 操作
他们降低了数学,所以它可能不是准确的n2或他们说它是什么,但这将是规模的支配因素。