我更喜欢尽可能少的正式定义和简单的数学。
当前回答
1(一) :
这种复杂性与O(1)相同,除非它只是稍微糟糕一点,对于所有实用目的,你可以把它视为一个非常大的连续规模。
和(n):
O(n log n):
O(n2):
它作为一个平方,在那里 n 是平方侧的长度. 这是与“网络效应”相同的增长率,在那里网络中的每个人都可以知道网络中的每个人. 增长是昂贵的. 大多数可扩展的解决方案不能使用这个复杂度的算法,而不做显著的体操。
二(二) :
其他回答
预告片
算法:解决问题的程序/公式
如何分析算法,如何比较算法?
例如:你和一个朋友被要求创建一个函数,将数字从 0 到 N. 你与 f(x) 和你的朋友与 g(x) 相同的结果,但两个函数有不同的算法。
Big-O 评分:描述运行时间将与输入相对增长的速度,因为输入随意大。
三个关键点:
比较运行时间的增长速度 不要比较准确的运行时间(取决于硬件) 只关心运行时间的增长与输入(n) 因为n 随意大,专注于将增长最快的术语,因为n 得到大(想想无限) AKA 无形分析
空间复杂性:除了时间复杂性之外,我们也关心空间复杂性(一个算法使用的内存/空间多少)。
大 O 描述了一个功能的增长行为上限,例如一个程序的运行时间,当输入变得大。
例子:
O(n):如果我翻倍输入大小,运行时间将翻倍O(n2):如果输入大小将翻倍运行时间四倍O(log n):如果输入大小翻倍运行时间将增加一倍O(2n):如果输入大小增加一倍,运行时间将翻倍
输入尺寸通常是比特所需的空间来代表输入。
Big-O 是由程序所消耗的资源增加率,即问题例大小。
资源:可能是CPU时间,可能是最大 RAM 空间。
说问题是“找到金额”,
int Sum(int*arr,int size){
int sum=0;
while(size-->0)
sum+=arr[size];
return sum;
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5
说问题是“找到组合”,
void Combination(int*arr,int size)
{ int outer=size,inner=size;
while(outer -->0) {
inner=size;
while(inner -->0)
cout<<arr[outer]<<"-"<<arr[inner]<<endl;
}
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 = 25
对于“n”尺寸的输入,该程序以序列中的“n*n”节点的速度生长,因此,Big-O是N2以O(n2)表达。
什么是清晰的英语解释大O? 尽可能少的正式定义和简单的数学。
一个简单的英语解释需要Big-O评分:
当我们编程时,我们试图解决一个问题. 我们编码的称为算法. 大 O 评级允许我们以标准的方式比较我们算法的最糟糕的案例性能. 硬件特征随着时间的推移而变化,硬件的改进可以减少运行算法需要的时间。
英文片名 What Big O Notation 是:
不是所有的算法运行相同的时间,并且可以根据输入中的项目数量而变化,我们将称之为n. 基于这一点,我们将考虑最糟糕的案例分析,或者运行时间的上限,因为n 变得更大和更大。
大 O 评分最常被编程者用作计算(算法)将需要多长时间完成的约定测量,表达为输入组的尺寸的函数。
在许多情况下,一个算法的“O”将落入下列情况之一:
O(1) - 完成时间是相同的,无论输入组的尺寸. 一个例子是通过指数访问一个序列元素. O(Log N) - 完成时间增加大约与 log2(n)相匹配。 例如, 1024 个元素需要大约两倍的长度为 32 个元素,因为 Log2(1024) = 10 和 Log2(32) = 5. 一个例子是找到一个元素在二进制搜索树(BST)。
大 O 忽略了没有有意义的因素,因为输入尺寸向无限增加,而函数的增长曲线,这意味着由函数添加或加倍的恒数只是被忽略。