如何在c++中转换大端值和小端值?

为了清晰起见,我必须将二进制数据(双精度浮点值以及32位和64位整数)从一个CPU架构转换到另一个CPU架构。这并不涉及网络,因此ntoh()和类似的函数在这里不能工作。


注意:我接受的答案直接适用于我的目标编译器(这就是我选择它的原因)。然而,这里还有其他非常好的、更方便的答案。


当前回答

下面介绍如何读取以IEEE 754 64位格式存储的double,即使您的主机使用不同的系统。

/*
* read a double from a stream in ieee754 format regardless of host
*  encoding.
*  fp - the stream
*  bigendian - set to if big bytes first, clear for little bytes
*              first
*
*/
double freadieee754(FILE *fp, int bigendian)
{
    unsigned char buff[8];
    int i;
    double fnorm = 0.0;
    unsigned char temp;
    int sign;
    int exponent;
    double bitval;
    int maski, mask;
    int expbits = 11;
    int significandbits = 52;
    int shift;
    double answer;

    /* read the data */
    for (i = 0; i < 8; i++)
        buff[i] = fgetc(fp);
    /* just reverse if not big-endian*/
    if (!bigendian)
    {
        for (i = 0; i < 4; i++)
        {
            temp = buff[i];
            buff[i] = buff[8 - i - 1];
            buff[8 - i - 1] = temp;
        }
    }
    sign = buff[0] & 0x80 ? -1 : 1;
    /* exponet in raw format*/
    exponent = ((buff[0] & 0x7F) << 4) | ((buff[1] & 0xF0) >> 4);

    /* read inthe mantissa. Top bit is 0.5, the successive bits half*/
    bitval = 0.5;
    maski = 1;
    mask = 0x08;
    for (i = 0; i < significandbits; i++)
    {
        if (buff[maski] & mask)
            fnorm += bitval;

        bitval /= 2.0;
        mask >>= 1;
        if (mask == 0)
        {
            mask = 0x80;
            maski++;
        }
    }
    /* handle zero specially */
    if (exponent == 0 && fnorm == 0)
        return 0.0;

    shift = exponent - ((1 << (expbits - 1)) - 1); /* exponent = shift + bias */
    /* nans have exp 1024 and non-zero mantissa */
    if (shift == 1024 && fnorm != 0)
        return sqrt(-1.0);
    /*infinity*/
    if (shift == 1024 && fnorm == 0)
    {

#ifdef INFINITY
        return sign == 1 ? INFINITY : -INFINITY;
#endif
        return  (sign * 1.0) / 0.0;
    }
    if (shift > -1023)
    {
        answer = ldexp(fnorm + 1.0, shift);
        return answer * sign;
    }
    else
    {
        /* denormalised numbers */
        if (fnorm == 0.0)
            return 0.0;
        shift = -1022;
        while (fnorm < 1.0)
        {
            fnorm *= 2;
            shift--;
        }
        answer = ldexp(fnorm, shift);
        return answer * sign;
    }
}

对于这套函数的其余部分,包括写和整数例程,请参阅我的github项目

https://github.com/MalcolmMcLean/ieee754

其他回答

大多数平台都有一个系统头文件,提供了有效的byteswap函数。在Linux上是<end .h>。你可以用c++很好地包装它:

#include <iostream>

#include <endian.h>

template<size_t N> struct SizeT {};

#define BYTESWAPS(bits) \
template<class T> inline T htobe(T t, SizeT<bits / 8>) { return htobe ## bits(t); } \
template<class T> inline T htole(T t, SizeT<bits / 8>) { return htole ## bits(t); } \
template<class T> inline T betoh(T t, SizeT<bits / 8>) { return be ## bits ## toh(t); } \
template<class T> inline T letoh(T t, SizeT<bits / 8>) { return le ## bits ## toh(t); }

BYTESWAPS(16)
BYTESWAPS(32)
BYTESWAPS(64)

#undef BYTESWAPS

template<class T> inline T htobe(T t) { return htobe(t, SizeT<sizeof t>()); }
template<class T> inline T htole(T t) { return htole(t, SizeT<sizeof t>()); }
template<class T> inline T betoh(T t) { return betoh(t, SizeT<sizeof t>()); }
template<class T> inline T letoh(T t) { return letoh(t, SizeT<sizeof t>()); }

int main()
{
    std::cout << std::hex;
    std::cout << htobe(static_cast<unsigned short>(0xfeca)) << '\n';
    std::cout << htobe(0xafbeadde) << '\n';

    // Use ULL suffix to specify integer constant as unsigned long long 
    std::cout << htobe(0xfecaefbeafdeedfeULL) << '\n';
}

输出:

cafe
deadbeaf
feeddeafbeefcafe

如果你正在使用Visual c++,请执行以下操作:包含intrin.h并调用以下函数:

对于16位数字:

unsigned short _byteswap_ushort(unsigned short value);

对于32位数字:

unsigned long _byteswap_ulong(unsigned long value);

对于64位数字:

unsigned __int64 _byteswap_uint64(unsigned __int64 value);

8位数字(字符)不需要转换。

此外,这些仅定义为无符号值,它们也适用于有符号整数。

对于浮点数和双精度数,要比普通整数困难得多,因为它们可能在主机的字节顺序中。你可以在大端机器上得到小端浮点数,反之亦然。

其他编译器也有类似的特性。

例如,在GCC中,你可以直接调用一些内置程序,如下所示:

uint32_t __builtin_bswap32 (uint32_t x)
uint64_t __builtin_bswap64 (uint64_t x)

(不需要包含任何东西)。Afaik bits.h也以非gcc为中心的方式声明了相同的函数。

16位交换就是位旋转。

顺便说一句,调用这些内在函数而不是调用自己的内在函数可以获得最好的性能和代码密度。

下面介绍如何读取以IEEE 754 64位格式存储的double,即使您的主机使用不同的系统。

/*
* read a double from a stream in ieee754 format regardless of host
*  encoding.
*  fp - the stream
*  bigendian - set to if big bytes first, clear for little bytes
*              first
*
*/
double freadieee754(FILE *fp, int bigendian)
{
    unsigned char buff[8];
    int i;
    double fnorm = 0.0;
    unsigned char temp;
    int sign;
    int exponent;
    double bitval;
    int maski, mask;
    int expbits = 11;
    int significandbits = 52;
    int shift;
    double answer;

    /* read the data */
    for (i = 0; i < 8; i++)
        buff[i] = fgetc(fp);
    /* just reverse if not big-endian*/
    if (!bigendian)
    {
        for (i = 0; i < 4; i++)
        {
            temp = buff[i];
            buff[i] = buff[8 - i - 1];
            buff[8 - i - 1] = temp;
        }
    }
    sign = buff[0] & 0x80 ? -1 : 1;
    /* exponet in raw format*/
    exponent = ((buff[0] & 0x7F) << 4) | ((buff[1] & 0xF0) >> 4);

    /* read inthe mantissa. Top bit is 0.5, the successive bits half*/
    bitval = 0.5;
    maski = 1;
    mask = 0x08;
    for (i = 0; i < significandbits; i++)
    {
        if (buff[maski] & mask)
            fnorm += bitval;

        bitval /= 2.0;
        mask >>= 1;
        if (mask == 0)
        {
            mask = 0x80;
            maski++;
        }
    }
    /* handle zero specially */
    if (exponent == 0 && fnorm == 0)
        return 0.0;

    shift = exponent - ((1 << (expbits - 1)) - 1); /* exponent = shift + bias */
    /* nans have exp 1024 and non-zero mantissa */
    if (shift == 1024 && fnorm != 0)
        return sqrt(-1.0);
    /*infinity*/
    if (shift == 1024 && fnorm == 0)
    {

#ifdef INFINITY
        return sign == 1 ? INFINITY : -INFINITY;
#endif
        return  (sign * 1.0) / 0.0;
    }
    if (shift > -1023)
    {
        answer = ldexp(fnorm + 1.0, shift);
        return answer * sign;
    }
    else
    {
        /* denormalised numbers */
        if (fnorm == 0.0)
            return 0.0;
        shift = -1022;
        while (fnorm < 1.0)
        {
            fnorm *= 2;
            shift--;
        }
        answer = ldexp(fnorm, shift);
        return answer * sign;
    }
}

对于这套函数的其余部分,包括写和整数例程,请参阅我的github项目

https://github.com/MalcolmMcLean/ieee754

认真……我不明白为什么所有的解决方案都那么复杂!最简单、最通用的模板函数如何?它可以在任何操作系统的任何情况下交换任何大小的任何类型????

template <typename T>
void SwapEnd(T& var)
{
    static_assert(std::is_pod<T>::value, "Type must be POD type for safety");
    std::array<char, sizeof(T)> varArray;
    std::memcpy(varArray.data(), &var, sizeof(T));
    for(int i = 0; i < static_cast<int>(sizeof(var)/2); i++)
        std::swap(varArray[sizeof(var) - 1 - i],varArray[i]);
    std::memcpy(&var, varArray.data(), sizeof(T));
}

这是C和c++结合的神奇力量!只需逐个字符交换原始变量。

要点1:没有操作符:请记住,我没有使用简单的赋值操作符“=”,因为当反转字节序时,一些对象将被打乱,复制构造函数(或赋值操作符)将不起作用。因此,一个字符一个字符地复制它们更加可靠。

Point 2: Be aware of alignment issues: Notice that we're copying to and from an array, which is the right thing to do because the C++ compiler doesn't guarantee that we can access unaligned memory (this answer was updated from its original form for this). For example, if you allocate uint64_t, your compiler cannot guarantee that you can access the 3rd byte of that as a uint8_t. Therefore, the right thing to do is to copy this to a char array, swap it, then copy it back (so no reinterpret_cast). Notice that compilers are mostly smart enough to convert what you did back to a reinterpret_cast if they're capable of accessing individual bytes regardless of alignment.

使用此函数:

double x = 5;
SwapEnd(x);

现在x的字节序不同了。

如果您采用反转单词中位序的常见模式,并剔除每个字节中反转位的部分,那么您将只剩下反转单词中的字节的部分。对于64位:

x = ((x & 0x00000000ffffffff) << 32) ^ ((x >> 32) & 0x00000000ffffffff);
x = ((x & 0x0000ffff0000ffff) << 16) ^ ((x >> 16) & 0x0000ffff0000ffff);
x = ((x & 0x00ff00ff00ff00ff) <<  8) ^ ((x >>  8) & 0x00ff00ff00ff00ff);

编译器应该清除多余的位屏蔽操作(我把它们留在了突出显示模式),但如果它没有,你可以这样重写第一行:

x = ( x                       << 32) ^  (x >> 32);

在大多数架构上,这通常应该简化为一条旋转指令(忽略整个操作可能是一条指令)。

在RISC处理器上,大而复杂的常量可能会导致编译困难。不过,您可以简单地计算前一个的每个常数。像这样:

uint64_t k = 0x00000000ffffffff; /* compiler should know a trick for this */
x = ((x & k) << 32) ^ ((x >> 32) & k);
k ^= k << 16;
x = ((x & k) << 16) ^ ((x >> 16) & k);
k ^= k << 8;
x = ((x & k) <<  8) ^ ((x >>  8) & k);

如果你愿意,你可以把它写成一个循环。这样做效率不高,只是为了好玩:

int i = sizeof(x) * CHAR_BIT / 2;
uintmax_t k = (1 << i) - 1;
while (i >= 8)
{
    x = ((x & k) << i) ^ ((x >> i) & k);
    i >>= 1;
    k ^= k << i;
}

为了完整起见,这里是第一种形式的简化32位版本:

x = ( x               << 16) ^  (x >> 16);
x = ((x & 0x00ff00ff) <<  8) ^ ((x >>  8) & 0x00ff00ff);