我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。

其他回答

永远不要轰炸边界(除非正方形没有边界以外的邻居) 零角落。 到零角,将对角线上一个正方形的角的值降低(唯一的非边界邻居) 这会产生新的角落。见第2节

编辑:没有注意到Kostek提出了几乎相同的方法,所以现在我提出了更强烈的主张: 如果要清除的角总是选择在最外层,那么它是最优的。

在OP的例子中:在除5之外的任何地方掉落2(1+1或2)并不会导致掉落5所能击中的任何方块。所以我们必须在5上加上2(在左下角加上6…)

在这之后,只有一种方法可以清除(在左上角)角落里原本是1(现在是0)的东西,那就是在B3上删除0(类似excel的符号)。 等等。

只有在清除了整个A和E列以及1和7行之后,才开始更深一层的清理。

考虑只清除那些故意清除的角落,清除0值的角落不需要花费任何成本,并且简化了思考。

因为所有以这种方式投掷的炸弹都必须被投掷,并且这将导致清除战场,这是最佳解决方案。


睡了一觉后,我意识到这不是真的。 考虑

  ABCDE    
1 01000
2 10000
3 00000
4 00000

我的方法是在B3和C2上投放炸弹,而在B2上投放炸弹就足够了

使用分支和定界的数学整数线性规划

As it has already been mentioned, this problem can be solved using integer linear programming (which is NP-Hard). Mathematica already has ILP built in. "To solve an integer linear programming problem Mathematica first solves the equational constraints, reducing the problem to one containing inequality constraints only. Then it uses lattice reduction techniques to put the inequality system in a simpler form. Finally, it solves the simplified optimization problem using a branch-and-bound method." [see Constrained Optimization Tutorial in Mathematica.. ]

我写了下面的代码,利用ILP库的Mathematica。它的速度快得惊人。

solveMatrixBombProblem[problem_, r_, c_] := 
 Module[{}, 
  bombEffect[x_, y_, m_, n_] := 
   Table[If[(i == x || i == x - 1 || i == x + 1) && (j == y || 
        j == y - 1 || j == y + 1), 1, 0], {i, 1, m}, {j, 1, n}];
  bombMatrix[m_, n_] := 
   Transpose[
    Table[Table[
      Part[bombEffect[(i - Mod[i, n])/n + 1, Mod[i, n] + 1, m, 
        n], (j - Mod[j, n])/n + 1, Mod[j, n] + 1], {j, 0, 
       m*n - 1}], {i, 0, m*n - 1}]];
  X := x /@ Range[c*r];
  sol = Minimize[{Total[X], 
     And @@ Thread[bombMatrix[r, c].X >= problem] && 
      And @@ Thread[X >= 0] && Total[X] <= 10^100 && 
      Element[X, Integers]}, X];
  Print["Minimum required bombs = ", sol[[1]]];
  Print["A possible solution = ", 
   MatrixForm[
    Table[x[c*i + j + 1] /. sol[[2]], {i, 0, r - 1}, {j, 0, 
      c - 1}]]];]

对于问题中提供的示例:

solveMatrixBombProblem[{2, 3, 4, 7, 1, 1, 5, 2, 6, 2, 4, 3, 4, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 4, 1, 2, 1, 4, 3, 2, 6, 9, 1, 6, 4}, 7, 5]

输出

对于那些用贪婪算法读这篇文章的人

在下面这个10x10的问题上试试你的代码:

5   20  7   1   9   8   19  16  11  3  
17  8   15  17  12  4   5   16  8   18  
4   19  12  11  9   7   4   15  14  6  
17  20  4   9   19  8   17  2   10  8  
3   9   10  13  8   9   12  12  6   18  
16  16  2   10  7   12  17  11  4   15  
11  1   15  1   5   11  3   12  8   3  
7   11  16  19  17  11  20  2   5   19  
5   18  2   17  7   14  19  11  1   6  
13  20  8   4   15  10  19  5   11  12

这里用逗号分隔:

5, 20, 7, 1, 9, 8, 19, 16, 11, 3, 17, 8, 15, 17, 12, 4, 5, 16, 8, 18, 4, 19, 12, 11, 9, 7, 4, 15, 14, 6, 17, 20, 4, 9, 19, 8, 17, 2, 10, 8, 3, 9, 10, 13, 8, 9, 12, 12, 6, 18, 16, 16, 2, 10, 7, 12, 17, 11, 4, 15, 11, 1, 15, 1, 5, 11, 3, 12, 8, 3, 7, 11, 16, 19, 17, 11, 20, 2, 5, 19, 5, 18, 2, 17, 7, 14, 19, 11, 1, 6, 13, 20, 8, 4, 15, 10, 19, 5, 11, 12

对于这个问题,我的解决方案包含208个炸弹。这里有一个可能的解决方案(我能够在大约12秒内解决这个问题)。

作为一种测试Mathematica产生结果的方法,看看你的贪婪算法是否能做得更好。

Well, suppose we number the board positions 1, 2, ..., n x m. Any sequence of bomb drops can be represented by a sequence of numbers in this set, where numbers can repeat. However, the effect on the board is the same regardless of what order you drop the bombs in, so really any choice of bomb drops can be represented as a list of n x m numbers, where the first number represents the number of bombs dropped on position 1, the second number represents the number of bombs dropped on position 2, etc. Let's call this list of n x m numbers the "key".

你可以试着先计算1个炸弹投下的所有板子状态,然后用这些来计算2个炸弹投下的所有板子状态,等等,直到你得到所有的0。但是在每一步中,您都将使用上面定义的键缓存状态,因此您可以在计算下一步时使用这些结果(一种“动态规划”方法)。

但是根据n、m的大小和网格中的数字,这种方法的内存需求可能会过多。一旦你计算了N + 1的所有结果,你就可以抛弃N个炸弹投掷的所有结果,所以这里有一些节省。当然,您不能以花费更长的时间为代价缓存任何东西——动态编程方法以内存换取速度。

这是部分答案,我试图找到一个下界和上界,可能是炸弹的数量。

在3x3和更小的板上,解决方案通常是编号最大的单元。

在大于4x4的板中,第一个明显的下界是角的和:

*2* 3  7 *1*
 1  5  6  2
 2  1  3  2
*6* 9  6 *4*

无论你如何安排炸弹,都不可能用少于2+1+6+4=13个炸弹来清除这个4x4板。

在其他回答中已经提到,将炸弹放置在第二个角落以消除角落并不比将炸弹放置在角落本身更糟糕,所以考虑到棋盘:

*2* 3  4  7 *1*
 1  5  2  6  2
 4  3  4  2  1
 2  1  2  4  1
 3  1  3  4  1
 2  1  4  3  2
*6* 9  1  6 *4*

我们可以通过在第二个角上放置炸弹来将角归零,从而得到一个新的板:

 0  1  1  6  0
 0  3  0  5  1
 2  1  1  1  0
 2  1  2  4  1
 0  0  0  0  0
 0  0  0  0  0
 0  3  0  2  0

到目前为止一切顺利。我们需要13枚炸弹才能清空角落。

现在观察下面标记的数字6、4、3和2:

 0  1  1 *6* 0
 0  3  0  5  1
 2  1  1  1  0
*2* 1  2 *4* 1
 0  0  0  0  0
 0  0  0  0  0
 0 *3* 0  2  0

我们无法使用一枚炸弹去轰炸任何两个细胞,所以最小炸弹数量增加了6+4+3+2,所以再加上我们用来清除角落的炸弹数量,我们得到这张地图所需的最小炸弹数量变成了28枚炸弹。用少于28个炸弹是不可能清除这张地图的,这是这张地图的下限。

可以用贪心算法建立上界。其他答案表明,贪婪算法产生的解决方案使用28个炸弹。因为我们之前已经证明了没有一个最优解可以拥有少于28个炸弹,所以28个炸弹确实是一个最优解。

当贪心和我上面提到的寻找最小界的方法不收敛时,我猜你必须回去检查所有的组合。

求下界的算法如下:

选一个数值最大的元素,命名为P。 将所有距离P和P本身两步远的单元格标记为不可拾取。 将P添加到最小值列表中。 重复步骤1,直到所有单元格都不可拾取。 对最小值列表求和得到下界。

这将是一个贪婪的方法:

计算一个阶为n X m的“score”矩阵,其中score[i][j]是如果位置(i,j)被炸毁,则矩阵中各点的总扣除额。(一个点的最高分数是9分,最低分数是0分) 逐行移动,找到并选择第一个得分最高的位置(例如(i,j))。 炸弹(i, j)。增加炸弹数量。 如果原矩阵的所有元素都不为零,则转到1。

但我怀疑这是否是最佳解决方案。

编辑:

我上面提到的贪心方法,虽然有效,但很可能不能给我们最优的解决方案。所以我想应该添加一些DP的元素。

我想我们可以同意,在任何时候,具有最高“分数”(分数[I][j] =总扣分,如果(I,j)被炸)的位置之一必须被瞄准。从这个假设开始,下面是新的方法:

NumOfBombs(M):(返回所需的最小炸弹数量)

给定一个矩阵M (n X M),如果M中的所有元素都为0,则返回0。 计算“分数”矩阵M。 设k个不同的位置P1 P2…Pk (1 <= k <= n*m),为m中得分最高的位置。 return (1 + min(NumOfBombs(M1), NumOfBombs(M2),…, NumOfBombs(Mk)) M1, M2,……,Mk是我们轰炸位置P1, P2,…, Pk。

此外,如果我们想在此基础上破坏位置的顺序,我们必须跟踪“min”的结果。