我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

Pólya说:“如果你不能解决一个问题,那么有一个更容易解决的问题:找到它。”

显然更简单的问题是一维问题(当网格是单行时)。让我们从最简单的算法开始——贪婪地轰炸最大的目标。什么时候会出问题?

给定11 11,贪婪算法对先炸毁哪个单元格无关。当然,中心单元格更好——它一次将所有三个单元格归零。这就提出了一种新的算法a,“炸弹最小化剩余的总和”。这个算法什么时候会出错?

给定1 1 2 11 1,算法A在轰炸第2,第3或第4单元格之间是无所谓的。但是轰炸第二个单元格,留下0 0 11 11比轰炸第三个单元格,留下10 10 10 10 1好。如何解决这个问题?轰炸第三个单元格的问题是,左边的功和右边的功必须分开做。

“炸弹使剩余的总和最小化,但使左边(我们轰炸的地方)的最小值和右边的最小值最大化”如何?叫这个算法b,这个算法什么时候出错?


编辑:在阅读了评论之后,我同意一个更有趣的问题将是改变一维问题,使其两端连接起来。很乐意看到这方面的进展。

其他回答

生成最慢但最简单且无错误的算法,并测试所有有效的可能性。这种情况非常简单(因为结果与炸弹放置的顺序无关)。

创建N次应用bomp的函数 为所有炸弹放置/炸弹计数可能性创建循环(当矩阵==0时停止) 记住最好的解决方案。 在循环的最后,你得到了最好的解决方案 不仅是炸弹的数量,还有它们的位置

代码可以是这样的:

void copy(int **A,int **B,int m,int n)
    {
    for (int i=0;i<m;i++)
     for (int j=0;i<n;j++)
       A[i][j]=B[i][j];
    }

bool is_zero(int **M,int m,int n)
    {
    for (int i=0;i<m;i++)
     for (int j=0;i<n;j++)
      if (M[i][j]) return 0;
    return 1;
    }

void drop_bomb(int **M,int m,int n,int i,int j,int N)
    {
    int ii,jj;
    ii=i-1; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i-1; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i-1; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    }

void solve_problem(int **M,int m,int n)
    {
    int i,j,k,max=0;
    // you probably will need to allocate matrices P,TP,TM yourself instead of this:
    int P[m][n],min;             // solution: placement,min bomb count
    int TM[m][n],TP[m][n],cnt;   // temp
    for (i=0;i<m;i++)            // max count of bomb necessary to test
     for (j=0;j<n;j++)
      if (max<M[i][j]) max=M[i][j];
    for (i=0;i<m;i++)            // reset solution
     for (j=0;j<n;j++)
      P[i][j]=max;
    min=m*n*max; 
        copy(TP,P,m,n); cnt=min;

    for (;;)  // generate all possibilities
        {
        copy(TM,M,m,n);
        for (i=0;i<m;i++)   // test solution
         for (j=0;j<n;j++)
          drop_bomb(TM,m,n,TP[i][j]);
        if (is_zero(TM,m,n))// is solution
         if (min>cnt)       // is better solution -> store it
            {
            copy(P,TP,m,n); 
            min=cnt;    
            }
        // go to next possibility
        for (i=0,j=0;;)
            {
            TP[i][j]--;
            if (TP[i][j]>=0) break;
            TP[i][j]=max;
                 i++; if (i<m) break;
            i=0; j++; if (j<n) break;
            break;
            }
        if (is_zero(TP,m,n)) break;
        }
    //result is in P,min
    }

这可以通过很多方式进行优化,……最简单的是用M矩阵重置解,但你需要改变最大值和TP[][]递减代码

我相信为了减少炸弹的数量,你只需要最大化伤害。 要做到这一点,需要检查具有最强力的区域。因此,您首先分析具有3x3核的场,并检查哪里的和更强。还有炸弹…一直这样做,直到场地变平。这个文件的答案是28

var oMatrix = [
[2,3,4,7,1],
[1,5,2,6,2],
[4,3,4,2,1],
[2,1,2,4,1],
[3,1,3,4,1],
[2,1,4,3,2],
[6,9,1,6,4]
]

var nBombs = 0;
do
{
    var bSpacesLeftToBomb = false;
    var nHigh = 0;
    var nCellX = 0;
    var nCellY = 0;
    for(var y = 1 ; y<oMatrix.length-1;y++) 
        for(var x = 1 ; x<oMatrix[y].length-1;x++)  
        {
            var nValue = 0;
            for(var yy = y-1;yy<=y+1;yy++)
                for(var xx = x-1;xx<=x+1;xx++)
                    nValue += oMatrix[yy][xx];

            if(nValue>nHigh)
            {
                nHigh = nValue;
                nCellX = x;
                nCellY = y; 
            }

        }
    if(nHigh>0)
    {
        nBombs++;

        for(var yy = nCellY-1;yy<=nCellY+1;yy++)
        {
            for(var xx = nCellX-1;xx<=nCellX+1;xx++)
            {
                if(oMatrix[yy][xx]<=0)
                    continue;
                oMatrix[yy][xx] = --oMatrix[yy][xx];
            }
        }
        bSpacesLeftToBomb = true;
    }
}
while(bSpacesLeftToBomb);

alert(nBombs+'bombs');

这个贪婪的解决方案似乎是正确的:

正如评论中指出的那样,它在2D中会失败。但也许你可以改进它。

1 d: 如果至少有2个数字,你不需要从最左边的那个开始射击,因为从第二个开始射击并不差。所以射到第二个,而第一个不是0,因为你必须这么做。移动到下一个单元格。不要忘记最后一个单元格。

c++代码:

void bombs(vector<int>& v, int i, int n){
    ans += n;
    v[i] -= n;
    if(i > 0)
        v[i - 1] -= n;
    if(i + 1< v.size())
        v[i + 1] -= n;
}

void solve(vector<int> v){
    int n = v.size();
    for(int i = 0; i < n;++i){
        if(i != n - 1){
            bombs(v, i + 1, v[i]);
        }
        else
            bombs(v, i, v[i])
    }
}

对于2D: 再次强调:你不需要在第一行拍摄(如果有第二行)。所以要射到第二个。解决第一行的1D任务。(因为你需要使它为空)。下降。别忘了最后一排。

我也有28招。我使用了两个测试来确定最佳下一步:第一个是产生最小棋盘和的一步。其次,对于相等的和,产生最大密度的移动,定义为:

number-of-zeros / number-of-groups-of-zeros

我是哈斯克尔。“解决板”显示引擎的解决方案。你可以通过输入“main”来玩游戏,然后输入目标点,“best”作为推荐,或者“quit”退出。

输出: *主>解决板 [(4, 4),(3、6),(3),(2,2),(2,2),(4、6)(4、6),(2,6),(2),(4,2)(2,6),(3),(4,3)(2,6)(4,2)(4、6)(4、6),(3、6),(2,6)(2,6)(2、4)(2、4)(2,6),(6),(4,2)(4,2)(4,2)(4,2)]

import Data.List
import Data.List.Split
import Data.Ord
import Data.Function(on)

board = [2,3,4,7,1,
         1,5,2,6,2,
         4,3,4,2,1,
         2,1,2,4,1,
         3,1,3,4,1,
         2,1,4,3,2,
         6,9,1,6,4]

n = 5
m = 7

updateBoard board pt =
  let x = fst pt
      y = snd pt
      precedingLines = replicate ((y-2) * n) 0
      bomb = concat $ replicate (if y == 1
                                    then 2
                                    else min 3 (m+2-y)) (replicate (x-2) 0 
                                                         ++ (if x == 1 
                                                                then [1,1]
                                                                else replicate (min 3 (n+2-x)) 1)
                                                                ++ replicate (n-(x+1)) 0)
  in zipWith (\a b -> max 0 (a-b)) board (precedingLines ++ bomb ++ repeat 0)

showBoard board = 
  let top = "   " ++ (concat $ map (\x -> show x ++ ".") [1..n]) ++ "\n"
      chunks = chunksOf n board
  in putStrLn (top ++ showBoard' chunks "" 1)
       where showBoard' []     str count = str
             showBoard' (x:xs) str count =
               showBoard' xs (str ++ show count ++ "." ++ show x ++ "\n") (count+1)

instances _ [] = 0
instances x (y:ys)
  | x == y    = 1 + instances x ys
  | otherwise = instances x ys

density a = 
  let numZeros = instances 0 a
      groupsOfZeros = filter (\x -> head x == 0) (group a)
  in if null groupsOfZeros then 0 else numZeros / fromIntegral (length groupsOfZeros)

boardDensity board = sum (map density (chunksOf n board))

moves = [(a,b) | a <- [2..n-1], b <- [2..m-1]]               

bestMove board = 
  let lowestSumMoves = take 1 $ groupBy ((==) `on` snd) 
                              $ sortBy (comparing snd) (map (\x -> (x, sum $ updateBoard board x)) (moves))
  in if null lowestSumMoves
        then (0,0)
        else let lowestSumMoves' = map (\x -> fst x) (head lowestSumMoves) 
             in fst $ head $ reverse $ sortBy (comparing snd) 
                (map (\x -> (x, boardDensity $ updateBoard board x)) (lowestSumMoves'))   

solve board = solve' board [] where
  solve' board result
    | sum board == 0 = result
    | otherwise      = 
        let best = bestMove board 
        in solve' (updateBoard board best) (result ++ [best])

main :: IO ()
main = mainLoop board where
  mainLoop board = do 
    putStrLn ""
    showBoard board
    putStr "Pt: "
    a <- getLine
    case a of 
      "quit"    -> do putStrLn ""
                      return ()
      "best"    -> do putStrLn (show $ bestMove board)
                      mainLoop board
      otherwise -> let ws = splitOn "," a
                       pt = (read (head ws), read (last ws))
                   in do mainLoop (updateBoard board pt)

这里似乎有一个非二部匹配子结构。考虑下面的例子:

0010000
1000100
0000001
1000000
0000001
1000100
0010000

这种情况下的最佳解决方案的大小为5,因为这是9-cycle的边的最小顶点覆盖的大小。

这个例子,特别地,表明了一些人发布的线性规划松弛法是不精确的,不管用,还有其他一些不好的东西。我很确定我可以减少“用尽可能少的边覆盖我的平面立方图的顶点”来解决你的问题,这让我怀疑任何贪婪/爬坡的解决方案是否有效。

在最坏的情况下,我找不到在多项式时间内解出来的方法。可能有一个非常聪明的二进制搜索和dp解决方案,但我没有看到。

编辑:我看到这个比赛(http://deadline24.pl)是语言无关的;他们给你一堆输入文件,你给他们输出。所以你不需要在最坏情况下多项式时间内运行的东西。特别是,您可以查看输入!

There are a bunch of small cases in the input. Then there's a 10x1000 case, a 100x100 case, and a 1000x1000 case. The three large cases are all very well-behaved. Horizontally adjacent entries typically have the same value. On a relatively beefy machine, I'm able to solve all of the cases by brute-forcing using CPLEX in just a couple of minutes. I got lucky on the 1000x1000; the LP relaxation happens to have an integral optimal solution. My solutions agree with the .ans files provided in the test data bundle.

我敢打赌你可以用比我更直接的方式使用输入的结构,如果你看了它;看起来你只需要砍掉第一行,或者两行,或者三行直到你什么都不剩。(看起来,在1000x1000中,所有的行都是不增加的?我猜这就是你的“B部分”的来源吧?)