我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这是对第一个问题的回答。我没有注意到他改变了参数。

创建一个所有目标的列表。根据掉落物品(掉落物品本身和所有邻居)影响的正数值的数量为目标分配一个值。最高值是9。

根据受影响目标的数量(降序)对目标进行排序,对每个受影响目标的和进行二次降序排序。

向排名最高的目标投掷炸弹,然后重新计算目标,直到所有目标值都为零。

同意,这并不总是最优的。例如,

100011
011100
011100
011100
000000
100011

这种方法需要5枚炸弹才能清除。最理想的情况是,你可以在4分钟内完成。不过,很 非常接近,没有回头路。在大多数情况下,这将是最优的,或者非常接近。

使用原来的问题数,该方法解决28个炸弹。

添加代码来演示这种方法(使用带有按钮的表单):

         private void button1_Click(object sender, EventArgs e)
    {
        int[,] matrix = new int[10, 10] {{5, 20, 7, 1, 9, 8, 19, 16, 11, 3}, 
                                         {17, 8, 15, 17, 12, 4, 5, 16, 8, 18},
                                         { 4, 19, 12, 11, 9, 7, 4, 15, 14, 6},
                                         { 17, 20, 4, 9, 19, 8, 17, 2, 10, 8},
                                         { 3, 9, 10, 13, 8, 9, 12, 12, 6, 18}, 
                                         {16, 16, 2, 10, 7, 12, 17, 11, 4, 15},
                                         { 11, 1, 15, 1, 5, 11, 3, 12, 8, 3},
                                         { 7, 11, 16, 19, 17, 11, 20, 2, 5, 19},
                                         { 5, 18, 2, 17, 7, 14, 19, 11, 1, 6},
                                         { 13, 20, 8, 4, 15, 10, 19, 5, 11, 12}};


        int value = 0;
        List<Target> Targets = GetTargets(matrix);
        while (Targets.Count > 0)
        {
            BombTarget(ref matrix, Targets[0]);
            value += 1;
            Targets = GetTargets(matrix);
        }
        Console.WriteLine( value);
        MessageBox.Show("done: " + value);
    }

    private static void BombTarget(ref int[,] matrix, Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[a, b] > 0)
                        {
                            matrix[a, b] -= 1;
                        }
                    }
                }
            }
        }
        Console.WriteLine("Dropped bomb on " + t.x + "," + t.y);
    }

    private static List<Target> GetTargets(int[,] matrix)
    {
        List<Target> Targets = new List<Target>();
        int width = matrix.GetUpperBound(0);
        int height = matrix.GetUpperBound(1);
        for (int x = 0; x <= width; x++)
        {
            for (int y = 0; y <= height; y++)
            {
                Target t = new Target();
                t.x = x;
                t.y = y;
                SetTargetValue(matrix, ref t);
                if (t.value > 0) Targets.Add(t);
            }
        }
        Targets = Targets.OrderByDescending(x => x.value).ThenByDescending( x => x.sum).ToList();
        return Targets;
    }

    private static void SetTargetValue(int[,] matrix, ref Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[ a, b] > 0)
                        {
                            t.value += 1;
                            t.sum += matrix[a,b];
                        }

                    }
                }
            }
        }

    }

你需要的一个类:

        class Target
    {
        public int value;
        public int sum;
        public int x;
        public int y;
    }

其他回答

这是另一个想法:

让我们先给黑板上的每个空格分配一个权重,计算在那里扔炸弹会减少多少数字。如果这个空间有一个非零数,它就得到一个点,如果它的相邻空间有一个非零数,它就得到一个额外的点。如果这是一个1000 * 1000的网格,我们为这100万个空间中的每一个都分配了权重。

然后根据权重对列表中的空格进行排序,并轰炸权重最高的空格。可以这么说,这是我们最大的收获。

在此之后,更新每个空间的重量是受炸弹的影响。这是你轰炸的空间,和它相邻的空间,以及它们相邻的空间。换句话说,任何空间的价值都可能因为爆炸而减少为零,或者相邻空间的价值减少为零。

然后,根据权重重新排序列表空间。由于轰炸只改变了一小部分空间的权重,因此不需要使用整个列表,只需在列表中移动这些空间。

轰炸新的最高权重空间,并重复上述步骤。

这保证了每次轰炸都能减少尽可能多的空格(基本上,它会击中尽可能少的已经为零的空格),所以这是最优的,除非它们的权重是相同的。所以你可能需要做一些回溯跟踪,当有一个平局的顶部重量。不过,只有最高重量的领带重要,其他领带不重要,所以希望没有太多的回溯。

Edit: Mysticial's counterexample below demonstrates that in fact this isn't guaranteed to be optimal, regardless of ties in weights. In some cases reducing the weight as much as possible in a given step actually leaves the remaining bombs too spread out to achieve as high a cummulative reduction after the second step as you could have with a slightly less greedy choice in the first step. I was somewhat mislead by the notion that the results are insensitive to the order of bombings. They are insensitive to the order in that you could take any series of bombings and replay them from the start in a different order and end up with the same resulting board. But it doesn't follow from that that you can consider each bombing independently. Or, at least, each bombing must be considered in a way that takes into account how well it sets up the board for subsequent bombings.

蛮力!

我知道它效率不高,但即使你找到了一个更快的算法,你也可以对这个结果进行测试,以了解它有多准确。

使用一些递归,像这样:

void fn(tableState ts, currentlevel cl)
{
  // first check if ts is all zeros yet, if not:
  //
  // do a for loop to go through all cells of ts, 
  // for each cell do a bomb, and then
  // call: 
  // fn(ts, cl + 1);

}

你可以通过缓存来提高效率,如果不同的方法导致相同的结果,你不应该重复相同的步骤。

阐述:

如果轰炸单元格1,3,5的结果与轰炸单元格5,3,1的结果相同,那么,对于这两种情况,您不应该重新执行所有后续步骤,只需1就足够了,您应该将所有表状态存储在某个地方并使用其结果。

表统计信息的散列可以用于快速比较。

使用分支和定界的数学整数线性规划

As it has already been mentioned, this problem can be solved using integer linear programming (which is NP-Hard). Mathematica already has ILP built in. "To solve an integer linear programming problem Mathematica first solves the equational constraints, reducing the problem to one containing inequality constraints only. Then it uses lattice reduction techniques to put the inequality system in a simpler form. Finally, it solves the simplified optimization problem using a branch-and-bound method." [see Constrained Optimization Tutorial in Mathematica.. ]

我写了下面的代码,利用ILP库的Mathematica。它的速度快得惊人。

solveMatrixBombProblem[problem_, r_, c_] := 
 Module[{}, 
  bombEffect[x_, y_, m_, n_] := 
   Table[If[(i == x || i == x - 1 || i == x + 1) && (j == y || 
        j == y - 1 || j == y + 1), 1, 0], {i, 1, m}, {j, 1, n}];
  bombMatrix[m_, n_] := 
   Transpose[
    Table[Table[
      Part[bombEffect[(i - Mod[i, n])/n + 1, Mod[i, n] + 1, m, 
        n], (j - Mod[j, n])/n + 1, Mod[j, n] + 1], {j, 0, 
       m*n - 1}], {i, 0, m*n - 1}]];
  X := x /@ Range[c*r];
  sol = Minimize[{Total[X], 
     And @@ Thread[bombMatrix[r, c].X >= problem] && 
      And @@ Thread[X >= 0] && Total[X] <= 10^100 && 
      Element[X, Integers]}, X];
  Print["Minimum required bombs = ", sol[[1]]];
  Print["A possible solution = ", 
   MatrixForm[
    Table[x[c*i + j + 1] /. sol[[2]], {i, 0, r - 1}, {j, 0, 
      c - 1}]]];]

对于问题中提供的示例:

solveMatrixBombProblem[{2, 3, 4, 7, 1, 1, 5, 2, 6, 2, 4, 3, 4, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 4, 1, 2, 1, 4, 3, 2, 6, 9, 1, 6, 4}, 7, 5]

输出

对于那些用贪婪算法读这篇文章的人

在下面这个10x10的问题上试试你的代码:

5   20  7   1   9   8   19  16  11  3  
17  8   15  17  12  4   5   16  8   18  
4   19  12  11  9   7   4   15  14  6  
17  20  4   9   19  8   17  2   10  8  
3   9   10  13  8   9   12  12  6   18  
16  16  2   10  7   12  17  11  4   15  
11  1   15  1   5   11  3   12  8   3  
7   11  16  19  17  11  20  2   5   19  
5   18  2   17  7   14  19  11  1   6  
13  20  8   4   15  10  19  5   11  12

这里用逗号分隔:

5, 20, 7, 1, 9, 8, 19, 16, 11, 3, 17, 8, 15, 17, 12, 4, 5, 16, 8, 18, 4, 19, 12, 11, 9, 7, 4, 15, 14, 6, 17, 20, 4, 9, 19, 8, 17, 2, 10, 8, 3, 9, 10, 13, 8, 9, 12, 12, 6, 18, 16, 16, 2, 10, 7, 12, 17, 11, 4, 15, 11, 1, 15, 1, 5, 11, 3, 12, 8, 3, 7, 11, 16, 19, 17, 11, 20, 2, 5, 19, 5, 18, 2, 17, 7, 14, 19, 11, 1, 6, 13, 20, 8, 4, 15, 10, 19, 5, 11, 12

对于这个问题,我的解决方案包含208个炸弹。这里有一个可能的解决方案(我能够在大约12秒内解决这个问题)。

作为一种测试Mathematica产生结果的方法,看看你的贪婪算法是否能做得更好。

我想不出一个计算实际数字的方法除非用我最好的启发式方法计算轰炸行动并希望得到一个合理的结果。

So my method is to compute a bombing efficiency metric for each cell, bomb the cell with the highest value, .... iterate the process until I've flattened everything. Some have advocated using simple potential damage (i.e. score from 0 to 9) as a metric, but that falls short by pounding high value cells and not making use of damage overlap. I'd calculate cell value - sum of all neighbouring cells, reset any positive to 0 and use the absolute value of anything negative. Intuitively this metric should make a selection that help maximise damage overlap on cells with high counts instead of pounding those directly.

下面的代码在28个炸弹中达到了测试场的完全破坏(注意,使用潜在伤害作为度量,结果是31!)

using System;
using System.Collections.Generic;
using System.Linq;

namespace StackOverflow
{
  internal class Program
  {
    // store the battle field as flat array + dimensions
    private static int _width = 5;
    private static int _length = 7;
    private static int[] _field = new int[] {
        2, 3, 4, 7, 1,
        1, 5, 2, 6, 2,
        4, 3, 4, 2, 1,
        2, 1, 2, 4, 1,
        3, 1, 3, 4, 1,
        2, 1, 4, 3, 2,
        6, 9, 1, 6, 4
    };
    // this will store the devastation metric
    private static int[] _metric;

    // do the work
    private static void Main(string[] args)
    {
        int count = 0;

        while (_field.Sum() > 0)
        {
            Console.Out.WriteLine("Round {0}:", ++count);
            GetBlastPotential();
            int cell_to_bomb = FindBestBombingSite();
            PrintField(cell_to_bomb);
            Bomb(cell_to_bomb);
        }
        Console.Out.WriteLine("Done in {0} rounds", count);
    } 

    // convert 2D position to 1D index
    private static int Get1DCoord(int x, int y)
    {
        if ((x < 0) || (y < 0) || (x >= _width) || (y >= _length)) return -1;
        else
        {
            return (y * _width) + x;
        }
    }

    // Convert 1D index to 2D position
    private static void Get2DCoord(int n, out int x, out int y)
    {
        if ((n < 0) || (n >= _field.Length))
        {
            x = -1;
            y = -1;
        }
        else
        {
            x = n % _width;
            y = n / _width;
        }
    }

    // Compute a list of 1D indices for a cell neighbours
    private static List<int> GetNeighbours(int cell)
    {
        List<int> neighbours = new List<int>();
        int x, y;
        Get2DCoord(cell, out x, out y);
        if ((x >= 0) && (y >= 0))
        {
            List<int> tmp = new List<int>();
            tmp.Add(Get1DCoord(x - 1, y - 1));
            tmp.Add(Get1DCoord(x - 1, y));
            tmp.Add(Get1DCoord(x - 1, y + 1));
            tmp.Add(Get1DCoord(x, y - 1));
            tmp.Add(Get1DCoord(x, y + 1));
            tmp.Add(Get1DCoord(x + 1, y - 1));
            tmp.Add(Get1DCoord(x + 1, y));
            tmp.Add(Get1DCoord(x + 1, y + 1));

            // eliminate invalid coords - i.e. stuff past the edges
            foreach (int c in tmp) if (c >= 0) neighbours.Add(c);
        }
        return neighbours;
    }

    // Compute the devastation metric for each cell
    // Represent the Value of the cell minus the sum of all its neighbours
    private static void GetBlastPotential()
    {
        _metric = new int[_field.Length];
        for (int i = 0; i < _field.Length; i++)
        {
            _metric[i] = _field[i];
            List<int> neighbours = GetNeighbours(i);
            if (neighbours != null)
            {
                foreach (int j in neighbours) _metric[i] -= _field[j];
            }
        }
        for (int i = 0; i < _metric.Length; i++)
        {
            _metric[i] = (_metric[i] < 0) ? Math.Abs(_metric[i]) : 0;
        }
    }

    //// Compute the simple expected damage a bomb would score
    //private static void GetBlastPotential()
    //{
    //    _metric = new int[_field.Length];
    //    for (int i = 0; i < _field.Length; i++)
    //    {
    //        _metric[i] = (_field[i] > 0) ? 1 : 0;
    //        List<int> neighbours = GetNeighbours(i);
    //        if (neighbours != null)
    //        {
    //            foreach (int j in neighbours) _metric[i] += (_field[j] > 0) ? 1 : 0;
    //        }
    //    }            
    //}

    // Update the battle field upon dropping a bomb
    private static void Bomb(int cell)
    {
        List<int> neighbours = GetNeighbours(cell);
        foreach (int i in neighbours)
        {
            if (_field[i] > 0) _field[i]--;
        }
    }

    // Find the best bombing site - just return index of local maxima
    private static int FindBestBombingSite()
    {
        int max_idx = 0;
        int max_val = int.MinValue;
        for (int i = 0; i < _metric.Length; i++)
        {
            if (_metric[i] > max_val)
            {
                max_val = _metric[i];
                max_idx = i;
            }
        }
        return max_idx;
    }

    // Display the battle field on the console
    private static void PrintField(int cell)
    {
        for (int x = 0; x < _width; x++)
        {
            for (int y = 0; y < _length; y++)
            {
                int c = Get1DCoord(x, y);
                if (c == cell)
                    Console.Out.Write(string.Format("[{0}]", _field[c]).PadLeft(4));
                else
                    Console.Out.Write(string.Format(" {0} ", _field[c]).PadLeft(4));
            }
            Console.Out.Write(" || ");
            for (int y = 0; y < _length; y++)
            {
                int c = Get1DCoord(x, y);
                if (c == cell)
                    Console.Out.Write(string.Format("[{0}]", _metric[c]).PadLeft(4));
                else
                    Console.Out.Write(string.Format(" {0} ", _metric[c]).PadLeft(4));
            }
            Console.Out.WriteLine();
        }
        Console.Out.WriteLine();
    }           
  }
}

产生的轰炸模式输出如下(左边是字段值,右边是度量值)

Round 1:
  2   1   4   2   3   2   6  ||   7  16   8  10   4  18   6
  3   5   3   1   1   1   9  ||  11  18  18  21  17  28   5
  4  [2]  4   2   3   4   1  ||  19 [32] 21  20  17  24  22
  7   6   2   4   4   3   6  ||   8  17  20  14  16  22   8
  1   2   1   1   1   2   4  ||  14  15  14  11  13  16   7

Round 2:
  2   1   4   2   3   2   6  ||   5  13   6   9   4  18   6
  2   4   2   1   1  [1]  9  ||  10  15  17  19  17 [28]  5
  3   2   3   2   3   4   1  ||  16  24  18  17  17  24  22
  6   5   1   4   4   3   6  ||   7  14  19  12  16  22   8
  1   2   1   1   1   2   4  ||  12  12  12  10  13  16   7

Round 3:
  2   1   4   2   2   1   5  ||   5  13   6   7   3  15   5
  2   4   2   1   0   1   8  ||  10  15  17  16  14  20   2
  3  [2]  3   2   2   3   0  ||  16 [24] 18  15  16  21  21
  6   5   1   4   4   3   6  ||   7  14  19  11  14  19   6
  1   2   1   1   1   2   4  ||  12  12  12  10  13  16   7

Round 4:
  2   1   4   2   2   1   5  ||   3  10   4   6   3  15   5
  1   3   1   1   0   1   8  ||   9  12  16  14  14  20   2
  2   2   2   2   2  [3]  0  ||  13  16  15  12  16 [21] 21
  5   4   0   4   4   3   6  ||   6  11  18   9  14  19   6
  1   2   1   1   1   2   4  ||  10   9  10   9  13  16   7

Round 5:
  2   1   4   2   2   1   5  ||   3  10   4   6   2  13   3
  1   3   1   1   0  [0]  7  ||   9  12  16  13  12 [19]  2
  2   2   2   2   1   3   0  ||  13  16  15  10  14  15  17
  5   4   0   4   3   2   5  ||   6  11  18   7  13  17   6
  1   2   1   1   1   2   4  ||  10   9  10   8  11  13   5

Round 6:
  2   1   4   2   1   0   4  ||   3  10   4   5   2  11   2
  1   3   1   1   0   0   6  ||   9  12  16  11   8  13   0
  2   2   2   2   0   2   0  ||  13  16  15   9  14  14  15
  5   4  [0]  4   3   2   5  ||   6  11 [18]  6  11  15   5
  1   2   1   1   1   2   4  ||  10   9  10   8  11  13   5

Round 7:
  2   1   4   2   1   0   4  ||   3  10   4   5   2  11   2
  1   3   1   1   0   0   6  ||   8  10  13   9   7  13   0
  2  [1]  1   1   0   2   0  ||  11 [15] 12   8  12  14  15
  5   3   0   3   3   2   5  ||   3   8  10   3   8  15   5
  1   1   0   0   1   2   4  ||   8   8   7   7   9  13   5

Round 8:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  11   2
  0   2   0   1   0   0   6  ||   7   7  12   7   7  13   0
  1   1   0   1   0   2   0  ||   8   8  10   6  12  14  15
  4   2   0   3   3  [2]  5  ||   2   6   8   2   8 [15]  5
  1   1   0   0   1   2   4  ||   6   6   6   7   9  13   5

Round 9:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  11   2
  0   2   0   1   0   0   6  ||   7   7  12   7   6  12   0
  1   1   0   1   0  [1]  0  ||   8   8  10   5  10 [13] 13
  4   2   0   3   2   2   4  ||   2   6   8   0   6   9   3
  1   1   0   0   0   1   3  ||   6   6   6   5   8  10   4

Round 10:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  10   1
  0   2  [0]  1   0   0   5  ||   7   7 [12]  7   6  11   0
  1   1   0   1   0   1   0  ||   8   8  10   4   8   9  10
  4   2   0   3   1   1   3  ||   2   6   8   0   6   8   3
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 11:
  2   0   3   1   1   0   4  ||   0   6   0   3   0  10   1
  0   1   0   0   0  [0]  5  ||   4   5   5   5   3 [11]  0
  1   0   0   0   0   1   0  ||   6   8   6   4   6   9  10
  4   2   0   3   1   1   3  ||   1   5   6   0   5   8   3
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 12:
  2   0   3   1   0   0   3  ||   0   6   0   2   1   7   1
  0   1   0   0   0   0   4  ||   4   5   5   4   1   7   0
  1   0   0   0   0  [0]  0  ||   6   8   6   4   5  [9]  8
  4   2   0   3   1   1   3  ||   1   5   6   0   4   7   2
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 13:
  2   0   3   1   0   0   3  ||   0   6   0   2   1   6   0
  0   1   0   0   0   0   3  ||   4   5   5   4   1   6   0
  1  [0]  0   0   0   0   0  ||   6  [8]  6   3   3   5   5
  4   2   0   3   0   0   2  ||   1   5   6   0   4   6   2
  1   1   0   0   0   1   3  ||   6   6   6   3   4   4   0

Round 14:
  2   0   3   1   0  [0]  3  ||   0   5   0   2   1  [6]  0
  0   0   0   0   0   0   3  ||   2   5   4   4   1   6   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   5   5
  3   1   0   3   0   0   2  ||   0   4   5   0   4   6   2
  1   1   0   0   0   1   3  ||   4   4   5   3   4   4   0

Round 15:
  2   0   3   1   0   0   2  ||   0   5   0   2   1   4   0
  0   0   0   0   0   0   2  ||   2   5   4   4   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   4   4
  3   1   0   3   0  [0]  2  ||   0   4   5   0   4  [6]  2
  1   1   0   0   0   1   3  ||   4   4   5   3   4   4   0

Round 16:
  2  [0]  3   1   0   0   2  ||   0  [5]  0   2   1   4   0
  0   0   0   0   0   0   2  ||   2   5   4   4   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   3   3
  3   1   0   3   0   0   1  ||   0   4   5   0   3   3   1
  1   1   0   0   0   0   2  ||   4   4   5   3   3   3   0

Round 17:
  1   0   2   1   0   0   2  ||   0   3   0   1   1   4   0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   3   3
  3   1  [0]  3   0   0   1  ||   0   4  [5]  0   3   3   1
  1   1   0   0   0   0   2  ||   4   4   5   3   3   3   0

Round 18:
  1   0   2   1   0   0   2  ||   0   3   0   1   1   4   0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   3   3   2   2   2   3   3
  3  [0]  0   2   0   0   1  ||   0  [4]  2   0   2   3   1
  1   0   0   0   0   0   2  ||   2   4   2   2   2   3   0

Round 19:
  1   0   2   1   0  [0]  2  ||   0   3   0   1   1  [4]  0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   3   3
  2   0   0   2   0   0   1  ||   0   2   2   0   2   3   1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 20:
  1  [0]  2   1   0   0   1  ||   0  [3]  0   1   1   2   0
  0   0   0   0   0   0   1  ||   1   3   3   3   1   2   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   2   2
  2   0   0   2   0   0   1  ||   0   2   2   0   2   3   1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 21:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0   0   0   0   0   1  ||   0   1   2   2   1   2   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   2   2
  2   0   0   2   0  [0]  1  ||   0   2   2   0   2  [3]  1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 22:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0   0   0   0   0   1  ||   0   1   2   2   1   2   0
 [0]  0   0   0   0   0   0  ||  [2]  2   2   2   2   1   1
  2   0   0   2   0   0   0  ||   0   2   2   0   2   1   1
  0   0   0   0   0   0   1  ||   2   2   2   2   2   1   0

Round 23:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0  [0]  0   0   0   1  ||   0   1  [2]  2   1   2   0
  0   0   0   0   0   0   0  ||   1   1   2   2   2   1   1
  1   0   0   2   0   0   0  ||   0   1   2   0   2   1   1
  0   0   0   0   0   0   1  ||   1   1   2   2   2   1   0

Round 24:
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0  [0]  0   0   0   0  ||   1   1  [2]  2   2   1   1
  1   0   0   2   0   0   0  ||   0   1   2   0   2   1   1
  0   0   0   0   0   0   1  ||   1   1   2   2   2   1   0

Round 25:
  0   0   0   0   0  [0]  1  ||   0   0   0   0   0  [2]  0
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0   0   0   0   0   0  ||   1   1   1   1   1   1   1
  1   0   0   1   0   0   0  ||   0   1   1   0   1   1   1
  0   0   0   0   0   0   1  ||   1   1   1   1   1   1   0

Round 26:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
 [0]  0   0   0   0   0   0  ||  [1]  1   1   1   1   0   0
  1   0   0   1   0   0   0  ||   0   1   1   0   1   1   1
  0   0   0   0   0   0   1  ||   1   1   1   1   1   1   0

Round 27:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0  [0]  0   0   0   0  ||   0   0  [1]  1   1   0   0
  0   0   0   1   0   0   0  ||   0   0   1   0   1   1   1
  0   0   0   0   0   0   1  ||   0   0   1   1   1   1   0

Round 28:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0  [0]  0  ||   0   0   0   0   0  [1]  1
  0   0   0   0   0   0   1  ||   0   0   0   0   0   1   0

Done in 28 rounds

到目前为止,一些答案给出了指数时间,一些涉及动态规划。我怀疑这些是否有必要。

我的解是O(mnS)其中m和n是板子的维度,S是所有整数的和。这个想法相当野蛮:找到每次可以杀死最多的位置,并在0处终止。

对于给定的棋盘,它给出28步棋,并且在每次落子后打印出棋盘。

完整的,不言自明的代码:

import java.util.Arrays;

public class BombMinDrops {

    private static final int[][] BOARD = {{2,3,4,7,1}, {1,5,2,6,2}, {4,3,4,2,1}, {2,1,2,4,1}, {3,1,3,4,1}, {2,1,4,3,2}, {6,9,1,6,4}};
    private static final int ROWS = BOARD.length;
    private static final int COLS = BOARD[0].length;
    private static int remaining = 0;
    private static int dropCount = 0;
    static {
        for (int i = 0; i < ROWS; i++) {
            for (int j = 0; j < COLS; j++) {
                remaining = remaining + BOARD[i][j];
            }
        }
    }

    private static class Point {
        int x, y;
        int kills;

        Point(int x, int y, int kills) {
            this.x = x;
            this.y = y;
            this.kills = kills;
        }

        @Override
        public String toString() {
            return dropCount + "th drop at [" + x + ", " + y + "] , killed " + kills;
        }
    }

    private static int countPossibleKills(int x, int y) {
        int count = 0;
        for (int row = x - 1; row <= x + 1; row++) {
            for (int col = y - 1; col <= y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) count++;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        return count;
    }

    private static void drop(Point here) {
        for (int row = here.x - 1; row <= here.x + 1; row++) {
            for (int col = here.y - 1; col <= here.y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) BOARD[row][col]--;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        dropCount++;
        remaining = remaining - here.kills;
        print(here);
    }

    public static void solve() {
        while (remaining > 0) {
            Point dropWithMaxKills = new Point(-1, -1, -1);
            for (int i = 0; i < ROWS; i++) {
                for (int j = 0; j < COLS; j++) {
                    int possibleKills = countPossibleKills(i, j);
                    if (possibleKills > dropWithMaxKills.kills) {
                        dropWithMaxKills = new Point(i, j, possibleKills);
                    }
                }
            }

            drop(dropWithMaxKills);
        }

        System.out.println("Total dropped: " + dropCount);
    }

    private static void print(Point drop) {
        System.out.println(drop.toString());
        for (int[] row : BOARD) {
            System.out.println(Arrays.toString(row));
        }

        System.out.println();
    }

    public static void main(String[] args) {
        solve();
    }

}