我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这里有一个解决方案,推广良好的性质的角。

让我们假设我们可以为给定的字段找到一个完美的落点,也就是说,一个减少其中值的最佳方法。然后,为了找到最少的炸弹数量,一个算法的初稿可能是(代码是从ruby实现中复制粘贴的):

dropped_bomb_count = 0
while there_are_cells_with_non_zero_count_left
  coordinates = choose_a_perfect_drop_point
  drop_bomb(coordinates)
  dropped_bomb_count += 1
end
return dropped_bomb_count

挑战是choose_a_perfect_drop_point。首先,让我们定义一个完美的落点是什么。

(x, y)的放置点会减少(x, y)中的值。它也可能会减少其他单元格中的值。 (x, y)的放置点A比(x, y)的放置点b更好,如果它减少了b所减少的单元格的适当超集中的值。 如果没有其他更好的投放点,投放点是最大的。 (x, y)的两个放置点是等效的,如果它们减少了同一组单元格。 如果(x, y)的放置点等价于(x, y)的所有最大放置点,那么它就是完美的。

如果(x, y)存在一个完美的投放点,那么您不能比在(x, y)的一个完美投放点上投放炸弹更有效地降低(x, y)处的值。

给定字段的完美放置点是其任何单元格的完美放置点。

以下是一些例子:

1 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

单元格(0,0)(从零开始的索引)的完美放置点是(1,1)。(1,1)的所有其他放置点,即(0,0)、(0,1)和(1,0),减少的单元格较少。

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

单元格(2,2)(从零开始的索引)的完美落点是(2,2),以及所有周围的单元格(1,1)、(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2)和(3,3)。

0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

单元格(2,2)的完美放置点是(3,1):它减少了(2,2)中的值和(4,0)中的值。(2,2)的所有其他放置点都不是最大的,因为它们减少了一个单元格。(2,2)的完美下拉点也是(4,0)的完美下拉点,它是字段的唯一完美下拉点。它为这个领域带来了完美的解决方案(一颗炸弹)。

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 0 0

(2,2)没有完美的落点:(1,1)和(1,3)都减少(2,2)和另一个单元格(它们是(2,2)的最大落点),但它们不相等。然而,(1,1)是(0,0)的完美落点,(1,3)是(0,4)的完美落点。

根据完美落点的定义和一定的检查顺序,我得到了以下问题示例的结果:

Drop bomb on 1, 1
Drop bomb on 1, 1
Drop bomb on 1, 5
Drop bomb on 1, 5
Drop bomb on 1, 5
Drop bomb on 1, 6
Drop bomb on 1, 2
Drop bomb on 1, 2
Drop bomb on 0, 6
Drop bomb on 0, 6
Drop bomb on 2, 1
Drop bomb on 2, 5
Drop bomb on 2, 5
Drop bomb on 2, 5
Drop bomb on 3, 1
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 4
Drop bomb on 3, 4
Drop bomb on 3, 3
Drop bomb on 3, 3
Drop bomb on 3, 6
Drop bomb on 3, 6
Drop bomb on 3, 6
Drop bomb on 4, 6
28

然而,该算法只有在每一步之后至少有一个完美落点时才能工作。可以在没有完美落点的情况下构建例子:

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

对于这些情况,我们可以修改算法,这样我们就不会选择完美的落点,而是选择一个具有最大落点的最小选择的坐标,然后计算每个选择的最小值。在上面的例子中,所有有值的单元格都有两个最大落点。例如,(0,1)有最大落点(1,1)和(1,2)。选择其中任何一个,然后计算最小值,会得到这样的结果:

Drop bomb on 1, 1
Drop bomb on 2, 2
Drop bomb on 1, 2
Drop bomb on 2, 1
2

其他回答

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。

到目前为止,一些答案给出了指数时间,一些涉及动态规划。我怀疑这些是否有必要。

我的解是O(mnS)其中m和n是板子的维度,S是所有整数的和。这个想法相当野蛮:找到每次可以杀死最多的位置,并在0处终止。

对于给定的棋盘,它给出28步棋,并且在每次落子后打印出棋盘。

完整的,不言自明的代码:

import java.util.Arrays;

public class BombMinDrops {

    private static final int[][] BOARD = {{2,3,4,7,1}, {1,5,2,6,2}, {4,3,4,2,1}, {2,1,2,4,1}, {3,1,3,4,1}, {2,1,4,3,2}, {6,9,1,6,4}};
    private static final int ROWS = BOARD.length;
    private static final int COLS = BOARD[0].length;
    private static int remaining = 0;
    private static int dropCount = 0;
    static {
        for (int i = 0; i < ROWS; i++) {
            for (int j = 0; j < COLS; j++) {
                remaining = remaining + BOARD[i][j];
            }
        }
    }

    private static class Point {
        int x, y;
        int kills;

        Point(int x, int y, int kills) {
            this.x = x;
            this.y = y;
            this.kills = kills;
        }

        @Override
        public String toString() {
            return dropCount + "th drop at [" + x + ", " + y + "] , killed " + kills;
        }
    }

    private static int countPossibleKills(int x, int y) {
        int count = 0;
        for (int row = x - 1; row <= x + 1; row++) {
            for (int col = y - 1; col <= y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) count++;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        return count;
    }

    private static void drop(Point here) {
        for (int row = here.x - 1; row <= here.x + 1; row++) {
            for (int col = here.y - 1; col <= here.y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) BOARD[row][col]--;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        dropCount++;
        remaining = remaining - here.kills;
        print(here);
    }

    public static void solve() {
        while (remaining > 0) {
            Point dropWithMaxKills = new Point(-1, -1, -1);
            for (int i = 0; i < ROWS; i++) {
                for (int j = 0; j < COLS; j++) {
                    int possibleKills = countPossibleKills(i, j);
                    if (possibleKills > dropWithMaxKills.kills) {
                        dropWithMaxKills = new Point(i, j, possibleKills);
                    }
                }
            }

            drop(dropWithMaxKills);
        }

        System.out.println("Total dropped: " + dropCount);
    }

    private static void print(Point drop) {
        System.out.println(drop.toString());
        for (int[] row : BOARD) {
            System.out.println(Arrays.toString(row));
        }

        System.out.println();
    }

    public static void main(String[] args) {
        solve();
    }

}

Pólya说:“如果你不能解决一个问题,那么有一个更容易解决的问题:找到它。”

显然更简单的问题是一维问题(当网格是单行时)。让我们从最简单的算法开始——贪婪地轰炸最大的目标。什么时候会出问题?

给定11 11,贪婪算法对先炸毁哪个单元格无关。当然,中心单元格更好——它一次将所有三个单元格归零。这就提出了一种新的算法a,“炸弹最小化剩余的总和”。这个算法什么时候会出错?

给定1 1 2 11 1,算法A在轰炸第2,第3或第4单元格之间是无所谓的。但是轰炸第二个单元格,留下0 0 11 11比轰炸第三个单元格,留下10 10 10 10 1好。如何解决这个问题?轰炸第三个单元格的问题是,左边的功和右边的功必须分开做。

“炸弹使剩余的总和最小化,但使左边(我们轰炸的地方)的最小值和右边的最小值最大化”如何?叫这个算法b,这个算法什么时候出错?


编辑:在阅读了评论之后,我同意一个更有趣的问题将是改变一维问题,使其两端连接起来。很乐意看到这方面的进展。

如果你想要绝对最优解来清理棋盘,你将不得不使用经典的回溯,但如果矩阵非常大,它将需要很长时间才能找到最佳解,如果你想要一个“可能的”最优解,你可以使用贪婪算法,如果你需要帮助写算法,我可以帮助你

现在想想,这是最好的办法。在那里制作另一个矩阵,存储通过投掷炸弹而移除的点,然后选择点数最多的单元格,并在那里投掷炸弹更新点数矩阵,然后继续。例子:

2 3 5 -> (2+(1*3)) (3+(1*5)) (5+(1*3))
1 3 2 -> (1+(1*4)) (3+(1*7)) (2+(1*4))
1 0 2 -> (1+(1*2)) (0+(1*5)) (2+(1*2))

对于每个相邻的高于0的单元格,单元格值+1

这可以用深度为O(3^(n))的树来求解。其中n是所有平方和。

首先考虑用O(9^n)树来解决问题是很简单的,只需考虑所有可能的爆炸位置。有关示例,请参阅Alfe的实现。

接下来我们意识到,我们可以从下往上轰炸,仍然得到一个最小的轰炸模式。

Start from the bottom left corner. Bomb it to oblivion with the only plays that make sense (up and to the right). Move one square to the right. While the target has a value greater than zero, consider each of the 2 plays that make sense (straight up or up and to the right), reduce the value of the target by one, and make a new branch for each possibility. Move another to the right. While the target has a value greater than zero, consider each of the 3 plays that make sense (up left, up, and up right), reduce the value of the target by one, and make a new branch for each possibility. Repeat steps 5 and 6 until the row is eliminated. Move up a row and repeat steps 1 to 7 until the puzzle is solved.

这个算法是正确的,因为

有必要在某一时刻完成每一行。 完成一行总是需要一个游戏,一个在上面,一个在下面,或者在这一行内。 选择在未清除的最低行之上的玩法总是比选择在该行之上或该行之下的玩法更好。

在实践中,这个算法通常会比它的理论最大值做得更好,因为它会定期轰炸邻居并减少搜索的大小。如果我们假设每次轰炸都会减少4个额外目标的价值,那么我们的算法将运行在O(3^(n/4))或大约O(1.3^n)。

Because this algorithm is still exponential, it would be wise to limit the depth of the search. We might limit the number of branches allowed to some number, X, and once we are this deep we force the algorithm to choose the best path it has identified so far (the one that has the minimum total board sum in one of its terminal leaves). Then our algorithm is guaranteed to run in O(3^X) time, but it is not guaranteed to get the correct answer. However, we can always increase X and test empirically if the trade off between increased computation and better answers is worthwhile.