我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这是我的解决方案。由于时间有限,我不会用代码写出来,但我相信这应该每次都能产生最优的移动数量——尽管我不确定它在寻找要轰炸的点时是否有效。

首先,正如@Luka Rahne在一条评论中所说的,你轰炸的顺序并不重要,重要的是组合。

其次,正如许多人所说的那样,从角的对角线上轰炸1是最优的,因为它接触的点比角多。

这就生成了我的算法版本的基础: 我们可以在第一个或最后一个炸掉拐角的1-off,这没有关系(理论上) 我们首先破坏这些,因为它可以让后面的决定更容易(在实践中) 我们轰炸影响最大的点,同时轰炸那些角落。

让我们将阻力点定义为棋盘上具有最多不可炸点+周围0数量最多的点

非爆炸点可以定义为在我们正在研究的黑板的当前范围内不存在的点。

我还将定义4个处理范围的边界: 上=0,左=0,下=k,右=j。 (起始值)

最后,我将最优炸弹定义为投掷在与阻力点相邻的点上的炸弹,并接触(1)最高值的阻力点和(2)可能的最大数量的点。

关于方法,很明显我们正在从外到内的工作。我们将能够同时与4架“轰炸机”一起工作。

第一个阻力点显然是我们的弯道。“边界外”的点是不可轰炸的(每个角落的范围外都有5个点)。所以我们先在对角线上炸一个角。

算法:

找到4个最佳炸弹点。 如果一个炸弹点正在轰炸一个接触2个边界(即一个角)的阻力点,则一直轰炸到该点为0。否则,逐个轰炸,直到其中一个触及最佳轰炸点的阻力点为0。 对于每个边界: 如果(sum(bound)==0)前进界

重复以上步骤,直到上=下,左=右

稍后我将尝试编写实际代码

其他回答

由于时间不够,我不得不停留在部分解决方案上,但希望即使是这个部分解决方案也能提供解决这个问题的潜在方法的一些见解。

当面对一个困难的问题时,我喜欢想出一些简单的问题来培养对问题空间的直觉。这里,我采取的第一步是将这个二维问题简化为一维问题。考虑一行字:

0 4 2 1 3 0 1

不管怎样,你知道你需要在4点附近炸4次才能把它降到0。因为左边是一个较低的数字,所以轰炸0或4比轰炸2没有任何好处。事实上,我相信(但缺乏严格的证明)轰炸2,直到4点降到0,至少和任何其他策略一样好,让4点降到0。从左到右,我们可以采用如下策略:

index = 1
while index < line_length
  while number_at_index(index - 1) > 0
    bomb(index)
  end
  index++
end
# take care of the end of the line
while number_at_index(index - 1) > 0
  bomb(index - 1)
end

几个轰炸命令示例:

0 4[2]1 3 0 1
0 3[1]0 3 0 1
0 2[0]0 3 0 1
0 1[0]0 3 0 1
0 0 0 0 3[0]1
0 0 0 0 2[0]0
0 0 0 0 1[0]0
0 0 0 0 0 0 0

4[2]1 3 2 1 5
3[1]0 3 2 1 5
2[0]0 3 2 1 5
1[0]0 3 2 1 5
0 0 0 3[2]1 5
0 0 0 2[1]0 5
0 0 0 1[0]0 5
0 0 0 0 0 0[5]
0 0 0 0 0 0[4]
0 0 0 0 0 0[3]
0 0 0 0 0 0[2]
0 0 0 0 0 0[1]
0 0 0 0 0 0 0

从一个需要以某种方式下降的数字开始是一个很有吸引力的想法,因为它突然变得可以找到一个解,就像一些人声称的那样,至少和所有其他解一样好。

The next step up in complexity where this search of at least as good is still feasible is on the edge of the board. It is clear to me that there is never any strict benefit to bomb the outer edge; you're better off bombing the spot one in and getting three other spaces for free. Given this, we can say that bombing the ring one inside of the edge is at least as good as bombing the edge. Moreover, we can combine this with the intuition that bombing the right one inside of the edge is actually the only way to get edge spaces down to 0. Even more, it is trivially simple to figure out the optimal strategy (in that it is at least as good as any other strategy) to get corner numbers down to 0. We put this all together and can get much closer to a solution in the 2-D space.

根据对角子的观察,我们可以肯定地说,我们知道从任何起始棋盘到所有角子都是0的棋盘的最佳策略。这是一个这样的板的例子(我借用了上面两个线性板的数字)。我用不同的方式标记了一些空间,我会解释为什么。

0 4 2 1 3 0 1 0
4 x x x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

你会注意到,最上面一行和我们之前看到的线性例子非常相似。回想一下我们之前的观察,将第一行全部降为0的最佳方法是破坏第二行(x行)。轰炸任何y行都无法清除顶部行,轰炸顶部行也没有比轰炸x行相应空间更多的好处。

我们可以从上面应用线性策略(轰炸x行上的相应空间),只关注第一行,不关注其他任何内容。大概是这样的:

0 4 2 1 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 3 1 0 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 2 0 0 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 1 0 0 3 0 1 0
4 x[x]x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

0 0 0 0 3 0 1 0
4 x x x x x x 4
2 y y y y y y 2
1 y y y y y y 1
3 y y y y y y 3
2 y y y y y y 2
1 y y y y y y 1
5 y y y y y y 5
0 4 2 1 3 0 1 0

The flaw in this approach becomes very obvious in the final two bombings. It is clear, given that the only bomb sites that reduce the 4 figure in the first column in the second row are the first x and the y. The final two bombings are clearly inferior to just bombing the first x, which would have done the exact same (with regard to the first spot in the top row, which we have no other way of clearing). Since we have demonstrated that our current strategy is suboptimal, a modification in strategy is clearly needed.

在这一点上,我可以退一步,只关注一个角落。让我们考虑一下这个问题:

0 4 2 1
4 x y a
2 z . .
1 b . .

It is clear the only way to get the spaces with 4 down to zero are to bomb some combination of x, y, and z. With some acrobatics in my mind, I'm fairly sure the optimal solution is to bomb x three times and then a then b. Now it's a matter of figuring out how I reached that solution and if it reveals any intuition we can use to even solve this local problem. I notice that there's no bombing of y and z spaces. Attempting to find a corner where bombing those spaces makes sense yields a corner that looks like this:

0 4 2 5 0
4 x y a .
2 z . . .
5 b . . .
0 . . . .

对于这个问题,我很清楚,最优解决方案是轰炸y 5次,z 5次。让我们更进一步。

0 4 2 5 6 0 0
4 x y a . . .
2 z . . . . .
5 b . . . . .
6 . . . . . .
0 . . . . . .
0 . . . . . .

这里,最优解决方案是轰炸a和b 6次,然后x 4次。

现在它变成了一个如何将这些直觉转化为我们可以建立的原则的游戏。

希望能继续!

永远不要轰炸边界(除非正方形没有边界以外的邻居) 零角落。 到零角,将对角线上一个正方形的角的值降低(唯一的非边界邻居) 这会产生新的角落。见第2节

编辑:没有注意到Kostek提出了几乎相同的方法,所以现在我提出了更强烈的主张: 如果要清除的角总是选择在最外层,那么它是最优的。

在OP的例子中:在除5之外的任何地方掉落2(1+1或2)并不会导致掉落5所能击中的任何方块。所以我们必须在5上加上2(在左下角加上6…)

在这之后,只有一种方法可以清除(在左上角)角落里原本是1(现在是0)的东西,那就是在B3上删除0(类似excel的符号)。 等等。

只有在清除了整个A和E列以及1和7行之后,才开始更深一层的清理。

考虑只清除那些故意清除的角落,清除0值的角落不需要花费任何成本,并且简化了思考。

因为所有以这种方式投掷的炸弹都必须被投掷,并且这将导致清除战场,这是最佳解决方案。


睡了一觉后,我意识到这不是真的。 考虑

  ABCDE    
1 01000
2 10000
3 00000
4 00000

我的方法是在B3和C2上投放炸弹,而在B2上投放炸弹就足够了

这里似乎有一个非二部匹配子结构。考虑下面的例子:

0010000
1000100
0000001
1000000
0000001
1000100
0010000

这种情况下的最佳解决方案的大小为5,因为这是9-cycle的边的最小顶点覆盖的大小。

这个例子,特别地,表明了一些人发布的线性规划松弛法是不精确的,不管用,还有其他一些不好的东西。我很确定我可以减少“用尽可能少的边覆盖我的平面立方图的顶点”来解决你的问题,这让我怀疑任何贪婪/爬坡的解决方案是否有效。

在最坏的情况下,我找不到在多项式时间内解出来的方法。可能有一个非常聪明的二进制搜索和dp解决方案,但我没有看到。

编辑:我看到这个比赛(http://deadline24.pl)是语言无关的;他们给你一堆输入文件,你给他们输出。所以你不需要在最坏情况下多项式时间内运行的东西。特别是,您可以查看输入!

There are a bunch of small cases in the input. Then there's a 10x1000 case, a 100x100 case, and a 1000x1000 case. The three large cases are all very well-behaved. Horizontally adjacent entries typically have the same value. On a relatively beefy machine, I'm able to solve all of the cases by brute-forcing using CPLEX in just a couple of minutes. I got lucky on the 1000x1000; the LP relaxation happens to have an integral optimal solution. My solutions agree with the .ans files provided in the test data bundle.

我敢打赌你可以用比我更直接的方式使用输入的结构,如果你看了它;看起来你只需要砍掉第一行,或者两行,或者三行直到你什么都不剩。(看起来,在1000x1000中,所有的行都是不增加的?我猜这就是你的“B部分”的来源吧?)

这里有一个解决方案,推广良好的性质的角。

让我们假设我们可以为给定的字段找到一个完美的落点,也就是说,一个减少其中值的最佳方法。然后,为了找到最少的炸弹数量,一个算法的初稿可能是(代码是从ruby实现中复制粘贴的):

dropped_bomb_count = 0
while there_are_cells_with_non_zero_count_left
  coordinates = choose_a_perfect_drop_point
  drop_bomb(coordinates)
  dropped_bomb_count += 1
end
return dropped_bomb_count

挑战是choose_a_perfect_drop_point。首先,让我们定义一个完美的落点是什么。

(x, y)的放置点会减少(x, y)中的值。它也可能会减少其他单元格中的值。 (x, y)的放置点A比(x, y)的放置点b更好,如果它减少了b所减少的单元格的适当超集中的值。 如果没有其他更好的投放点,投放点是最大的。 (x, y)的两个放置点是等效的,如果它们减少了同一组单元格。 如果(x, y)的放置点等价于(x, y)的所有最大放置点,那么它就是完美的。

如果(x, y)存在一个完美的投放点,那么您不能比在(x, y)的一个完美投放点上投放炸弹更有效地降低(x, y)处的值。

给定字段的完美放置点是其任何单元格的完美放置点。

以下是一些例子:

1 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

单元格(0,0)(从零开始的索引)的完美放置点是(1,1)。(1,1)的所有其他放置点,即(0,0)、(0,1)和(1,0),减少的单元格较少。

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

单元格(2,2)(从零开始的索引)的完美落点是(2,2),以及所有周围的单元格(1,1)、(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2)和(3,3)。

0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

单元格(2,2)的完美放置点是(3,1):它减少了(2,2)中的值和(4,0)中的值。(2,2)的所有其他放置点都不是最大的,因为它们减少了一个单元格。(2,2)的完美下拉点也是(4,0)的完美下拉点,它是字段的唯一完美下拉点。它为这个领域带来了完美的解决方案(一颗炸弹)。

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 0 0

(2,2)没有完美的落点:(1,1)和(1,3)都减少(2,2)和另一个单元格(它们是(2,2)的最大落点),但它们不相等。然而,(1,1)是(0,0)的完美落点,(1,3)是(0,4)的完美落点。

根据完美落点的定义和一定的检查顺序,我得到了以下问题示例的结果:

Drop bomb on 1, 1
Drop bomb on 1, 1
Drop bomb on 1, 5
Drop bomb on 1, 5
Drop bomb on 1, 5
Drop bomb on 1, 6
Drop bomb on 1, 2
Drop bomb on 1, 2
Drop bomb on 0, 6
Drop bomb on 0, 6
Drop bomb on 2, 1
Drop bomb on 2, 5
Drop bomb on 2, 5
Drop bomb on 2, 5
Drop bomb on 3, 1
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 0
Drop bomb on 3, 4
Drop bomb on 3, 4
Drop bomb on 3, 3
Drop bomb on 3, 3
Drop bomb on 3, 6
Drop bomb on 3, 6
Drop bomb on 3, 6
Drop bomb on 4, 6
28

然而,该算法只有在每一步之后至少有一个完美落点时才能工作。可以在没有完美落点的情况下构建例子:

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

对于这些情况,我们可以修改算法,这样我们就不会选择完美的落点,而是选择一个具有最大落点的最小选择的坐标,然后计算每个选择的最小值。在上面的例子中,所有有值的单元格都有两个最大落点。例如,(0,1)有最大落点(1,1)和(1,2)。选择其中任何一个,然后计算最小值,会得到这样的结果:

Drop bomb on 1, 1
Drop bomb on 2, 2
Drop bomb on 1, 2
Drop bomb on 2, 1
2

我想不出一个计算实际数字的方法除非用我最好的启发式方法计算轰炸行动并希望得到一个合理的结果。

So my method is to compute a bombing efficiency metric for each cell, bomb the cell with the highest value, .... iterate the process until I've flattened everything. Some have advocated using simple potential damage (i.e. score from 0 to 9) as a metric, but that falls short by pounding high value cells and not making use of damage overlap. I'd calculate cell value - sum of all neighbouring cells, reset any positive to 0 and use the absolute value of anything negative. Intuitively this metric should make a selection that help maximise damage overlap on cells with high counts instead of pounding those directly.

下面的代码在28个炸弹中达到了测试场的完全破坏(注意,使用潜在伤害作为度量,结果是31!)

using System;
using System.Collections.Generic;
using System.Linq;

namespace StackOverflow
{
  internal class Program
  {
    // store the battle field as flat array + dimensions
    private static int _width = 5;
    private static int _length = 7;
    private static int[] _field = new int[] {
        2, 3, 4, 7, 1,
        1, 5, 2, 6, 2,
        4, 3, 4, 2, 1,
        2, 1, 2, 4, 1,
        3, 1, 3, 4, 1,
        2, 1, 4, 3, 2,
        6, 9, 1, 6, 4
    };
    // this will store the devastation metric
    private static int[] _metric;

    // do the work
    private static void Main(string[] args)
    {
        int count = 0;

        while (_field.Sum() > 0)
        {
            Console.Out.WriteLine("Round {0}:", ++count);
            GetBlastPotential();
            int cell_to_bomb = FindBestBombingSite();
            PrintField(cell_to_bomb);
            Bomb(cell_to_bomb);
        }
        Console.Out.WriteLine("Done in {0} rounds", count);
    } 

    // convert 2D position to 1D index
    private static int Get1DCoord(int x, int y)
    {
        if ((x < 0) || (y < 0) || (x >= _width) || (y >= _length)) return -1;
        else
        {
            return (y * _width) + x;
        }
    }

    // Convert 1D index to 2D position
    private static void Get2DCoord(int n, out int x, out int y)
    {
        if ((n < 0) || (n >= _field.Length))
        {
            x = -1;
            y = -1;
        }
        else
        {
            x = n % _width;
            y = n / _width;
        }
    }

    // Compute a list of 1D indices for a cell neighbours
    private static List<int> GetNeighbours(int cell)
    {
        List<int> neighbours = new List<int>();
        int x, y;
        Get2DCoord(cell, out x, out y);
        if ((x >= 0) && (y >= 0))
        {
            List<int> tmp = new List<int>();
            tmp.Add(Get1DCoord(x - 1, y - 1));
            tmp.Add(Get1DCoord(x - 1, y));
            tmp.Add(Get1DCoord(x - 1, y + 1));
            tmp.Add(Get1DCoord(x, y - 1));
            tmp.Add(Get1DCoord(x, y + 1));
            tmp.Add(Get1DCoord(x + 1, y - 1));
            tmp.Add(Get1DCoord(x + 1, y));
            tmp.Add(Get1DCoord(x + 1, y + 1));

            // eliminate invalid coords - i.e. stuff past the edges
            foreach (int c in tmp) if (c >= 0) neighbours.Add(c);
        }
        return neighbours;
    }

    // Compute the devastation metric for each cell
    // Represent the Value of the cell minus the sum of all its neighbours
    private static void GetBlastPotential()
    {
        _metric = new int[_field.Length];
        for (int i = 0; i < _field.Length; i++)
        {
            _metric[i] = _field[i];
            List<int> neighbours = GetNeighbours(i);
            if (neighbours != null)
            {
                foreach (int j in neighbours) _metric[i] -= _field[j];
            }
        }
        for (int i = 0; i < _metric.Length; i++)
        {
            _metric[i] = (_metric[i] < 0) ? Math.Abs(_metric[i]) : 0;
        }
    }

    //// Compute the simple expected damage a bomb would score
    //private static void GetBlastPotential()
    //{
    //    _metric = new int[_field.Length];
    //    for (int i = 0; i < _field.Length; i++)
    //    {
    //        _metric[i] = (_field[i] > 0) ? 1 : 0;
    //        List<int> neighbours = GetNeighbours(i);
    //        if (neighbours != null)
    //        {
    //            foreach (int j in neighbours) _metric[i] += (_field[j] > 0) ? 1 : 0;
    //        }
    //    }            
    //}

    // Update the battle field upon dropping a bomb
    private static void Bomb(int cell)
    {
        List<int> neighbours = GetNeighbours(cell);
        foreach (int i in neighbours)
        {
            if (_field[i] > 0) _field[i]--;
        }
    }

    // Find the best bombing site - just return index of local maxima
    private static int FindBestBombingSite()
    {
        int max_idx = 0;
        int max_val = int.MinValue;
        for (int i = 0; i < _metric.Length; i++)
        {
            if (_metric[i] > max_val)
            {
                max_val = _metric[i];
                max_idx = i;
            }
        }
        return max_idx;
    }

    // Display the battle field on the console
    private static void PrintField(int cell)
    {
        for (int x = 0; x < _width; x++)
        {
            for (int y = 0; y < _length; y++)
            {
                int c = Get1DCoord(x, y);
                if (c == cell)
                    Console.Out.Write(string.Format("[{0}]", _field[c]).PadLeft(4));
                else
                    Console.Out.Write(string.Format(" {0} ", _field[c]).PadLeft(4));
            }
            Console.Out.Write(" || ");
            for (int y = 0; y < _length; y++)
            {
                int c = Get1DCoord(x, y);
                if (c == cell)
                    Console.Out.Write(string.Format("[{0}]", _metric[c]).PadLeft(4));
                else
                    Console.Out.Write(string.Format(" {0} ", _metric[c]).PadLeft(4));
            }
            Console.Out.WriteLine();
        }
        Console.Out.WriteLine();
    }           
  }
}

产生的轰炸模式输出如下(左边是字段值,右边是度量值)

Round 1:
  2   1   4   2   3   2   6  ||   7  16   8  10   4  18   6
  3   5   3   1   1   1   9  ||  11  18  18  21  17  28   5
  4  [2]  4   2   3   4   1  ||  19 [32] 21  20  17  24  22
  7   6   2   4   4   3   6  ||   8  17  20  14  16  22   8
  1   2   1   1   1   2   4  ||  14  15  14  11  13  16   7

Round 2:
  2   1   4   2   3   2   6  ||   5  13   6   9   4  18   6
  2   4   2   1   1  [1]  9  ||  10  15  17  19  17 [28]  5
  3   2   3   2   3   4   1  ||  16  24  18  17  17  24  22
  6   5   1   4   4   3   6  ||   7  14  19  12  16  22   8
  1   2   1   1   1   2   4  ||  12  12  12  10  13  16   7

Round 3:
  2   1   4   2   2   1   5  ||   5  13   6   7   3  15   5
  2   4   2   1   0   1   8  ||  10  15  17  16  14  20   2
  3  [2]  3   2   2   3   0  ||  16 [24] 18  15  16  21  21
  6   5   1   4   4   3   6  ||   7  14  19  11  14  19   6
  1   2   1   1   1   2   4  ||  12  12  12  10  13  16   7

Round 4:
  2   1   4   2   2   1   5  ||   3  10   4   6   3  15   5
  1   3   1   1   0   1   8  ||   9  12  16  14  14  20   2
  2   2   2   2   2  [3]  0  ||  13  16  15  12  16 [21] 21
  5   4   0   4   4   3   6  ||   6  11  18   9  14  19   6
  1   2   1   1   1   2   4  ||  10   9  10   9  13  16   7

Round 5:
  2   1   4   2   2   1   5  ||   3  10   4   6   2  13   3
  1   3   1   1   0  [0]  7  ||   9  12  16  13  12 [19]  2
  2   2   2   2   1   3   0  ||  13  16  15  10  14  15  17
  5   4   0   4   3   2   5  ||   6  11  18   7  13  17   6
  1   2   1   1   1   2   4  ||  10   9  10   8  11  13   5

Round 6:
  2   1   4   2   1   0   4  ||   3  10   4   5   2  11   2
  1   3   1   1   0   0   6  ||   9  12  16  11   8  13   0
  2   2   2   2   0   2   0  ||  13  16  15   9  14  14  15
  5   4  [0]  4   3   2   5  ||   6  11 [18]  6  11  15   5
  1   2   1   1   1   2   4  ||  10   9  10   8  11  13   5

Round 7:
  2   1   4   2   1   0   4  ||   3  10   4   5   2  11   2
  1   3   1   1   0   0   6  ||   8  10  13   9   7  13   0
  2  [1]  1   1   0   2   0  ||  11 [15] 12   8  12  14  15
  5   3   0   3   3   2   5  ||   3   8  10   3   8  15   5
  1   1   0   0   1   2   4  ||   8   8   7   7   9  13   5

Round 8:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  11   2
  0   2   0   1   0   0   6  ||   7   7  12   7   7  13   0
  1   1   0   1   0   2   0  ||   8   8  10   6  12  14  15
  4   2   0   3   3  [2]  5  ||   2   6   8   2   8 [15]  5
  1   1   0   0   1   2   4  ||   6   6   6   7   9  13   5

Round 9:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  11   2
  0   2   0   1   0   0   6  ||   7   7  12   7   6  12   0
  1   1   0   1   0  [1]  0  ||   8   8  10   5  10 [13] 13
  4   2   0   3   2   2   4  ||   2   6   8   0   6   9   3
  1   1   0   0   0   1   3  ||   6   6   6   5   8  10   4

Round 10:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  10   1
  0   2  [0]  1   0   0   5  ||   7   7 [12]  7   6  11   0
  1   1   0   1   0   1   0  ||   8   8  10   4   8   9  10
  4   2   0   3   1   1   3  ||   2   6   8   0   6   8   3
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 11:
  2   0   3   1   1   0   4  ||   0   6   0   3   0  10   1
  0   1   0   0   0  [0]  5  ||   4   5   5   5   3 [11]  0
  1   0   0   0   0   1   0  ||   6   8   6   4   6   9  10
  4   2   0   3   1   1   3  ||   1   5   6   0   5   8   3
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 12:
  2   0   3   1   0   0   3  ||   0   6   0   2   1   7   1
  0   1   0   0   0   0   4  ||   4   5   5   4   1   7   0
  1   0   0   0   0  [0]  0  ||   6   8   6   4   5  [9]  8
  4   2   0   3   1   1   3  ||   1   5   6   0   4   7   2
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 13:
  2   0   3   1   0   0   3  ||   0   6   0   2   1   6   0
  0   1   0   0   0   0   3  ||   4   5   5   4   1   6   0
  1  [0]  0   0   0   0   0  ||   6  [8]  6   3   3   5   5
  4   2   0   3   0   0   2  ||   1   5   6   0   4   6   2
  1   1   0   0   0   1   3  ||   6   6   6   3   4   4   0

Round 14:
  2   0   3   1   0  [0]  3  ||   0   5   0   2   1  [6]  0
  0   0   0   0   0   0   3  ||   2   5   4   4   1   6   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   5   5
  3   1   0   3   0   0   2  ||   0   4   5   0   4   6   2
  1   1   0   0   0   1   3  ||   4   4   5   3   4   4   0

Round 15:
  2   0   3   1   0   0   2  ||   0   5   0   2   1   4   0
  0   0   0   0   0   0   2  ||   2   5   4   4   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   4   4
  3   1   0   3   0  [0]  2  ||   0   4   5   0   4  [6]  2
  1   1   0   0   0   1   3  ||   4   4   5   3   4   4   0

Round 16:
  2  [0]  3   1   0   0   2  ||   0  [5]  0   2   1   4   0
  0   0   0   0   0   0   2  ||   2   5   4   4   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   3   3
  3   1   0   3   0   0   1  ||   0   4   5   0   3   3   1
  1   1   0   0   0   0   2  ||   4   4   5   3   3   3   0

Round 17:
  1   0   2   1   0   0   2  ||   0   3   0   1   1   4   0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   3   3
  3   1  [0]  3   0   0   1  ||   0   4  [5]  0   3   3   1
  1   1   0   0   0   0   2  ||   4   4   5   3   3   3   0

Round 18:
  1   0   2   1   0   0   2  ||   0   3   0   1   1   4   0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   3   3   2   2   2   3   3
  3  [0]  0   2   0   0   1  ||   0  [4]  2   0   2   3   1
  1   0   0   0   0   0   2  ||   2   4   2   2   2   3   0

Round 19:
  1   0   2   1   0  [0]  2  ||   0   3   0   1   1  [4]  0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   3   3
  2   0   0   2   0   0   1  ||   0   2   2   0   2   3   1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 20:
  1  [0]  2   1   0   0   1  ||   0  [3]  0   1   1   2   0
  0   0   0   0   0   0   1  ||   1   3   3   3   1   2   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   2   2
  2   0   0   2   0   0   1  ||   0   2   2   0   2   3   1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 21:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0   0   0   0   0   1  ||   0   1   2   2   1   2   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   2   2
  2   0   0   2   0  [0]  1  ||   0   2   2   0   2  [3]  1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 22:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0   0   0   0   0   1  ||   0   1   2   2   1   2   0
 [0]  0   0   0   0   0   0  ||  [2]  2   2   2   2   1   1
  2   0   0   2   0   0   0  ||   0   2   2   0   2   1   1
  0   0   0   0   0   0   1  ||   2   2   2   2   2   1   0

Round 23:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0  [0]  0   0   0   1  ||   0   1  [2]  2   1   2   0
  0   0   0   0   0   0   0  ||   1   1   2   2   2   1   1
  1   0   0   2   0   0   0  ||   0   1   2   0   2   1   1
  0   0   0   0   0   0   1  ||   1   1   2   2   2   1   0

Round 24:
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0  [0]  0   0   0   0  ||   1   1  [2]  2   2   1   1
  1   0   0   2   0   0   0  ||   0   1   2   0   2   1   1
  0   0   0   0   0   0   1  ||   1   1   2   2   2   1   0

Round 25:
  0   0   0   0   0  [0]  1  ||   0   0   0   0   0  [2]  0
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0   0   0   0   0   0  ||   1   1   1   1   1   1   1
  1   0   0   1   0   0   0  ||   0   1   1   0   1   1   1
  0   0   0   0   0   0   1  ||   1   1   1   1   1   1   0

Round 26:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
 [0]  0   0   0   0   0   0  ||  [1]  1   1   1   1   0   0
  1   0   0   1   0   0   0  ||   0   1   1   0   1   1   1
  0   0   0   0   0   0   1  ||   1   1   1   1   1   1   0

Round 27:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0  [0]  0   0   0   0  ||   0   0  [1]  1   1   0   0
  0   0   0   1   0   0   0  ||   0   0   1   0   1   1   1
  0   0   0   0   0   0   1  ||   0   0   1   1   1   1   0

Round 28:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0  [0]  0  ||   0   0   0   0   0  [1]  1
  0   0   0   0   0   0   1  ||   0   0   0   0   0   1   0

Done in 28 rounds