我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这是我的解决方案。由于时间有限,我不会用代码写出来,但我相信这应该每次都能产生最优的移动数量——尽管我不确定它在寻找要轰炸的点时是否有效。

首先,正如@Luka Rahne在一条评论中所说的,你轰炸的顺序并不重要,重要的是组合。

其次,正如许多人所说的那样,从角的对角线上轰炸1是最优的,因为它接触的点比角多。

这就生成了我的算法版本的基础: 我们可以在第一个或最后一个炸掉拐角的1-off,这没有关系(理论上) 我们首先破坏这些,因为它可以让后面的决定更容易(在实践中) 我们轰炸影响最大的点,同时轰炸那些角落。

让我们将阻力点定义为棋盘上具有最多不可炸点+周围0数量最多的点

非爆炸点可以定义为在我们正在研究的黑板的当前范围内不存在的点。

我还将定义4个处理范围的边界: 上=0,左=0,下=k,右=j。 (起始值)

最后,我将最优炸弹定义为投掷在与阻力点相邻的点上的炸弹,并接触(1)最高值的阻力点和(2)可能的最大数量的点。

关于方法,很明显我们正在从外到内的工作。我们将能够同时与4架“轰炸机”一起工作。

第一个阻力点显然是我们的弯道。“边界外”的点是不可轰炸的(每个角落的范围外都有5个点)。所以我们先在对角线上炸一个角。

算法:

找到4个最佳炸弹点。 如果一个炸弹点正在轰炸一个接触2个边界(即一个角)的阻力点,则一直轰炸到该点为0。否则,逐个轰炸,直到其中一个触及最佳轰炸点的阻力点为0。 对于每个边界: 如果(sum(bound)==0)前进界

重复以上步骤,直到上=下,左=右

稍后我将尝试编写实际代码

其他回答

我也有28招。我使用了两个测试来确定最佳下一步:第一个是产生最小棋盘和的一步。其次,对于相等的和,产生最大密度的移动,定义为:

number-of-zeros / number-of-groups-of-zeros

我是哈斯克尔。“解决板”显示引擎的解决方案。你可以通过输入“main”来玩游戏,然后输入目标点,“best”作为推荐,或者“quit”退出。

输出: *主>解决板 [(4, 4),(3、6),(3),(2,2),(2,2),(4、6)(4、6),(2,6),(2),(4,2)(2,6),(3),(4,3)(2,6)(4,2)(4、6)(4、6),(3、6),(2,6)(2,6)(2、4)(2、4)(2,6),(6),(4,2)(4,2)(4,2)(4,2)]

import Data.List
import Data.List.Split
import Data.Ord
import Data.Function(on)

board = [2,3,4,7,1,
         1,5,2,6,2,
         4,3,4,2,1,
         2,1,2,4,1,
         3,1,3,4,1,
         2,1,4,3,2,
         6,9,1,6,4]

n = 5
m = 7

updateBoard board pt =
  let x = fst pt
      y = snd pt
      precedingLines = replicate ((y-2) * n) 0
      bomb = concat $ replicate (if y == 1
                                    then 2
                                    else min 3 (m+2-y)) (replicate (x-2) 0 
                                                         ++ (if x == 1 
                                                                then [1,1]
                                                                else replicate (min 3 (n+2-x)) 1)
                                                                ++ replicate (n-(x+1)) 0)
  in zipWith (\a b -> max 0 (a-b)) board (precedingLines ++ bomb ++ repeat 0)

showBoard board = 
  let top = "   " ++ (concat $ map (\x -> show x ++ ".") [1..n]) ++ "\n"
      chunks = chunksOf n board
  in putStrLn (top ++ showBoard' chunks "" 1)
       where showBoard' []     str count = str
             showBoard' (x:xs) str count =
               showBoard' xs (str ++ show count ++ "." ++ show x ++ "\n") (count+1)

instances _ [] = 0
instances x (y:ys)
  | x == y    = 1 + instances x ys
  | otherwise = instances x ys

density a = 
  let numZeros = instances 0 a
      groupsOfZeros = filter (\x -> head x == 0) (group a)
  in if null groupsOfZeros then 0 else numZeros / fromIntegral (length groupsOfZeros)

boardDensity board = sum (map density (chunksOf n board))

moves = [(a,b) | a <- [2..n-1], b <- [2..m-1]]               

bestMove board = 
  let lowestSumMoves = take 1 $ groupBy ((==) `on` snd) 
                              $ sortBy (comparing snd) (map (\x -> (x, sum $ updateBoard board x)) (moves))
  in if null lowestSumMoves
        then (0,0)
        else let lowestSumMoves' = map (\x -> fst x) (head lowestSumMoves) 
             in fst $ head $ reverse $ sortBy (comparing snd) 
                (map (\x -> (x, boardDensity $ updateBoard board x)) (lowestSumMoves'))   

solve board = solve' board [] where
  solve' board result
    | sum board == 0 = result
    | otherwise      = 
        let best = bestMove board 
        in solve' (updateBoard board best) (result ++ [best])

main :: IO ()
main = mainLoop board where
  mainLoop board = do 
    putStrLn ""
    showBoard board
    putStr "Pt: "
    a <- getLine
    case a of 
      "quit"    -> do putStrLn ""
                      return ()
      "best"    -> do putStrLn (show $ bestMove board)
                      mainLoop board
      otherwise -> let ws = splitOn "," a
                       pt = (read (head ws), read (last ws))
                   in do mainLoop (updateBoard board pt)

这是对第一个问题的回答。我没有注意到他改变了参数。

创建一个所有目标的列表。根据掉落物品(掉落物品本身和所有邻居)影响的正数值的数量为目标分配一个值。最高值是9。

根据受影响目标的数量(降序)对目标进行排序,对每个受影响目标的和进行二次降序排序。

向排名最高的目标投掷炸弹,然后重新计算目标,直到所有目标值都为零。

同意,这并不总是最优的。例如,

100011
011100
011100
011100
000000
100011

这种方法需要5枚炸弹才能清除。最理想的情况是,你可以在4分钟内完成。不过,很 非常接近,没有回头路。在大多数情况下,这将是最优的,或者非常接近。

使用原来的问题数,该方法解决28个炸弹。

添加代码来演示这种方法(使用带有按钮的表单):

         private void button1_Click(object sender, EventArgs e)
    {
        int[,] matrix = new int[10, 10] {{5, 20, 7, 1, 9, 8, 19, 16, 11, 3}, 
                                         {17, 8, 15, 17, 12, 4, 5, 16, 8, 18},
                                         { 4, 19, 12, 11, 9, 7, 4, 15, 14, 6},
                                         { 17, 20, 4, 9, 19, 8, 17, 2, 10, 8},
                                         { 3, 9, 10, 13, 8, 9, 12, 12, 6, 18}, 
                                         {16, 16, 2, 10, 7, 12, 17, 11, 4, 15},
                                         { 11, 1, 15, 1, 5, 11, 3, 12, 8, 3},
                                         { 7, 11, 16, 19, 17, 11, 20, 2, 5, 19},
                                         { 5, 18, 2, 17, 7, 14, 19, 11, 1, 6},
                                         { 13, 20, 8, 4, 15, 10, 19, 5, 11, 12}};


        int value = 0;
        List<Target> Targets = GetTargets(matrix);
        while (Targets.Count > 0)
        {
            BombTarget(ref matrix, Targets[0]);
            value += 1;
            Targets = GetTargets(matrix);
        }
        Console.WriteLine( value);
        MessageBox.Show("done: " + value);
    }

    private static void BombTarget(ref int[,] matrix, Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[a, b] > 0)
                        {
                            matrix[a, b] -= 1;
                        }
                    }
                }
            }
        }
        Console.WriteLine("Dropped bomb on " + t.x + "," + t.y);
    }

    private static List<Target> GetTargets(int[,] matrix)
    {
        List<Target> Targets = new List<Target>();
        int width = matrix.GetUpperBound(0);
        int height = matrix.GetUpperBound(1);
        for (int x = 0; x <= width; x++)
        {
            for (int y = 0; y <= height; y++)
            {
                Target t = new Target();
                t.x = x;
                t.y = y;
                SetTargetValue(matrix, ref t);
                if (t.value > 0) Targets.Add(t);
            }
        }
        Targets = Targets.OrderByDescending(x => x.value).ThenByDescending( x => x.sum).ToList();
        return Targets;
    }

    private static void SetTargetValue(int[,] matrix, ref Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[ a, b] > 0)
                        {
                            t.value += 1;
                            t.sum += matrix[a,b];
                        }

                    }
                }
            }
        }

    }

你需要的一个类:

        class Target
    {
        public int value;
        public int sum;
        public int x;
        public int y;
    }

这是另一个想法:

让我们先给黑板上的每个空格分配一个权重,计算在那里扔炸弹会减少多少数字。如果这个空间有一个非零数,它就得到一个点,如果它的相邻空间有一个非零数,它就得到一个额外的点。如果这是一个1000 * 1000的网格,我们为这100万个空间中的每一个都分配了权重。

然后根据权重对列表中的空格进行排序,并轰炸权重最高的空格。可以这么说,这是我们最大的收获。

在此之后,更新每个空间的重量是受炸弹的影响。这是你轰炸的空间,和它相邻的空间,以及它们相邻的空间。换句话说,任何空间的价值都可能因为爆炸而减少为零,或者相邻空间的价值减少为零。

然后,根据权重重新排序列表空间。由于轰炸只改变了一小部分空间的权重,因此不需要使用整个列表,只需在列表中移动这些空间。

轰炸新的最高权重空间,并重复上述步骤。

这保证了每次轰炸都能减少尽可能多的空格(基本上,它会击中尽可能少的已经为零的空格),所以这是最优的,除非它们的权重是相同的。所以你可能需要做一些回溯跟踪,当有一个平局的顶部重量。不过,只有最高重量的领带重要,其他领带不重要,所以希望没有太多的回溯。

Edit: Mysticial's counterexample below demonstrates that in fact this isn't guaranteed to be optimal, regardless of ties in weights. In some cases reducing the weight as much as possible in a given step actually leaves the remaining bombs too spread out to achieve as high a cummulative reduction after the second step as you could have with a slightly less greedy choice in the first step. I was somewhat mislead by the notion that the results are insensitive to the order of bombings. They are insensitive to the order in that you could take any series of bombings and replay them from the start in a different order and end up with the same resulting board. But it doesn't follow from that that you can consider each bombing independently. Or, at least, each bombing must be considered in a way that takes into account how well it sets up the board for subsequent bombings.

在这里,线性规划方法似乎非常有用。

设Pm x n为包含位置值的矩阵:

现在定义一个炸弹矩阵B(x, y)m x n,其中1≤x≤m, 1≤y≤n如下所示

以这样一种方式

例如:

所以我们正在寻找一个矩阵Bm x n = [bij]

可以定义为炸弹矩阵的和: (qij将是我们在pij位置投放的炸弹数量) pij - bij≤0(为了更简洁,我们称之为P - B≤0)

而且,B应该使和最小。

我们也可以把B写成前面的丑矩阵:

由于P - B≤0(即P≤B),我们得到了如下线性不等式系统:

qmn x1定义为

PMN x 1定义为

我们可以说我们有一个方程组是smnxmn这个矩阵要倒转来解方程组。我自己没有扩展它,但我相信在代码中应该很容易做到。

现在,我们有一个最小的问题可以表述为

I believe it is something easy, almost trivial to be solved with something like the simplex algorithm (there is this rather cool doc about it). However, I do know almost no linear programming (I will take a course about it on Coursera but it is just in the future...), I had some headaches trying to understand it and I have a huge freelance job to finish so I just give up here. It can be that I did something wrong at some point, or that it can't go any further, but I believe this path can eventually lead to the solution. Anyway, I am anxious for your feedback.

(特别感谢这个神奇的网站从LaTeX表达式创建图片)

永远不要轰炸边界(除非正方形没有边界以外的邻居) 零角落。 到零角,将对角线上一个正方形的角的值降低(唯一的非边界邻居) 这会产生新的角落。见第2节

编辑:没有注意到Kostek提出了几乎相同的方法,所以现在我提出了更强烈的主张: 如果要清除的角总是选择在最外层,那么它是最优的。

在OP的例子中:在除5之外的任何地方掉落2(1+1或2)并不会导致掉落5所能击中的任何方块。所以我们必须在5上加上2(在左下角加上6…)

在这之后,只有一种方法可以清除(在左上角)角落里原本是1(现在是0)的东西,那就是在B3上删除0(类似excel的符号)。 等等。

只有在清除了整个A和E列以及1和7行之后,才开始更深一层的清理。

考虑只清除那些故意清除的角落,清除0值的角落不需要花费任何成本,并且简化了思考。

因为所有以这种方式投掷的炸弹都必须被投掷,并且这将导致清除战场,这是最佳解决方案。


睡了一觉后,我意识到这不是真的。 考虑

  ABCDE    
1 01000
2 10000
3 00000
4 00000

我的方法是在B3和C2上投放炸弹,而在B2上投放炸弹就足够了