我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这是我的解决方案。由于时间有限,我不会用代码写出来,但我相信这应该每次都能产生最优的移动数量——尽管我不确定它在寻找要轰炸的点时是否有效。

首先,正如@Luka Rahne在一条评论中所说的,你轰炸的顺序并不重要,重要的是组合。

其次,正如许多人所说的那样,从角的对角线上轰炸1是最优的,因为它接触的点比角多。

这就生成了我的算法版本的基础: 我们可以在第一个或最后一个炸掉拐角的1-off,这没有关系(理论上) 我们首先破坏这些,因为它可以让后面的决定更容易(在实践中) 我们轰炸影响最大的点,同时轰炸那些角落。

让我们将阻力点定义为棋盘上具有最多不可炸点+周围0数量最多的点

非爆炸点可以定义为在我们正在研究的黑板的当前范围内不存在的点。

我还将定义4个处理范围的边界: 上=0,左=0,下=k,右=j。 (起始值)

最后,我将最优炸弹定义为投掷在与阻力点相邻的点上的炸弹,并接触(1)最高值的阻力点和(2)可能的最大数量的点。

关于方法,很明显我们正在从外到内的工作。我们将能够同时与4架“轰炸机”一起工作。

第一个阻力点显然是我们的弯道。“边界外”的点是不可轰炸的(每个角落的范围外都有5个点)。所以我们先在对角线上炸一个角。

算法:

找到4个最佳炸弹点。 如果一个炸弹点正在轰炸一个接触2个边界(即一个角)的阻力点,则一直轰炸到该点为0。否则,逐个轰炸,直到其中一个触及最佳轰炸点的阻力点为0。 对于每个边界: 如果(sum(bound)==0)前进界

重复以上步骤,直到上=下,左=右

稍后我将尝试编写实际代码

其他回答

永远不要轰炸边界(除非正方形没有边界以外的邻居) 零角落。 到零角,将对角线上一个正方形的角的值降低(唯一的非边界邻居) 这会产生新的角落。见第2节

编辑:没有注意到Kostek提出了几乎相同的方法,所以现在我提出了更强烈的主张: 如果要清除的角总是选择在最外层,那么它是最优的。

在OP的例子中:在除5之外的任何地方掉落2(1+1或2)并不会导致掉落5所能击中的任何方块。所以我们必须在5上加上2(在左下角加上6…)

在这之后,只有一种方法可以清除(在左上角)角落里原本是1(现在是0)的东西,那就是在B3上删除0(类似excel的符号)。 等等。

只有在清除了整个A和E列以及1和7行之后,才开始更深一层的清理。

考虑只清除那些故意清除的角落,清除0值的角落不需要花费任何成本,并且简化了思考。

因为所有以这种方式投掷的炸弹都必须被投掷,并且这将导致清除战场,这是最佳解决方案。


睡了一觉后,我意识到这不是真的。 考虑

  ABCDE    
1 01000
2 10000
3 00000
4 00000

我的方法是在B3和C2上投放炸弹,而在B2上投放炸弹就足够了

没有必要将问题转化为线性子问题。

相反,使用简单的贪婪启发式,即从最大的角落开始轰炸角落。

在给定的例子中,有四个角,{2,1,6,4}。对于每个角落,没有比轰炸单元格对角线更好的移动了,所以我们知道我们的第一个2+1+6+4 = 13次轰炸必须在这些对角线单元格中。在完成轰炸之后,我们会得到一个新的矩阵:

2 3 4 7 1      0 1 1 6 0      0 1 1 6 0     1 1 6 0     0 0 5     0 0 0 
1 5 2 6 2      0 3 0 5 1      0 3 0 5 1  => 1 0 4 0  => 0 0 3  => 0 0 0  
4 3 4 2 1      2 1 1 1 0      2 1 1 1 0     0 0 0 0     0 0 0     0 0 3  
2 1 2 4 1  =>  2 1 2 4 1  =>  2 1 2 4 1     0 0 3 0     0 0 3      
3 1 3 4 1      0 0 0 0 0      0 0 0 0 0 
2 1 4 3 2      0 0 0 0 0      0 0 0 0 0 
6 9 1 6 4      0 3 0 2 0      0 0 0 0 0 

在前13次爆炸之后,我们使用启发式方法通过3次爆炸消除3 0 2。现在,我们有两个新的角,在第四行{2,1}。我们炸了那些,再炸3次。我们现在已经将矩阵化简为4 * 4。有一个角落,左上角。我们搞砸了。现在我们还有两个角,{5,3}。因为5是最大的角,我们首先轰炸5个角,然后最后轰炸另一个角的3。总数是13+3+3+1+5+3 = 28。

这是对第一个问题的回答。我没有注意到他改变了参数。

创建一个所有目标的列表。根据掉落物品(掉落物品本身和所有邻居)影响的正数值的数量为目标分配一个值。最高值是9。

根据受影响目标的数量(降序)对目标进行排序,对每个受影响目标的和进行二次降序排序。

向排名最高的目标投掷炸弹,然后重新计算目标,直到所有目标值都为零。

同意,这并不总是最优的。例如,

100011
011100
011100
011100
000000
100011

这种方法需要5枚炸弹才能清除。最理想的情况是,你可以在4分钟内完成。不过,很 非常接近,没有回头路。在大多数情况下,这将是最优的,或者非常接近。

使用原来的问题数,该方法解决28个炸弹。

添加代码来演示这种方法(使用带有按钮的表单):

         private void button1_Click(object sender, EventArgs e)
    {
        int[,] matrix = new int[10, 10] {{5, 20, 7, 1, 9, 8, 19, 16, 11, 3}, 
                                         {17, 8, 15, 17, 12, 4, 5, 16, 8, 18},
                                         { 4, 19, 12, 11, 9, 7, 4, 15, 14, 6},
                                         { 17, 20, 4, 9, 19, 8, 17, 2, 10, 8},
                                         { 3, 9, 10, 13, 8, 9, 12, 12, 6, 18}, 
                                         {16, 16, 2, 10, 7, 12, 17, 11, 4, 15},
                                         { 11, 1, 15, 1, 5, 11, 3, 12, 8, 3},
                                         { 7, 11, 16, 19, 17, 11, 20, 2, 5, 19},
                                         { 5, 18, 2, 17, 7, 14, 19, 11, 1, 6},
                                         { 13, 20, 8, 4, 15, 10, 19, 5, 11, 12}};


        int value = 0;
        List<Target> Targets = GetTargets(matrix);
        while (Targets.Count > 0)
        {
            BombTarget(ref matrix, Targets[0]);
            value += 1;
            Targets = GetTargets(matrix);
        }
        Console.WriteLine( value);
        MessageBox.Show("done: " + value);
    }

    private static void BombTarget(ref int[,] matrix, Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[a, b] > 0)
                        {
                            matrix[a, b] -= 1;
                        }
                    }
                }
            }
        }
        Console.WriteLine("Dropped bomb on " + t.x + "," + t.y);
    }

    private static List<Target> GetTargets(int[,] matrix)
    {
        List<Target> Targets = new List<Target>();
        int width = matrix.GetUpperBound(0);
        int height = matrix.GetUpperBound(1);
        for (int x = 0; x <= width; x++)
        {
            for (int y = 0; y <= height; y++)
            {
                Target t = new Target();
                t.x = x;
                t.y = y;
                SetTargetValue(matrix, ref t);
                if (t.value > 0) Targets.Add(t);
            }
        }
        Targets = Targets.OrderByDescending(x => x.value).ThenByDescending( x => x.sum).ToList();
        return Targets;
    }

    private static void SetTargetValue(int[,] matrix, ref Target t)
    {
        for (int a = t.x - 1; a <= t.x + 1; a++)
        {
            for (int b = t.y - 1; b <= t.y + 1; b++)
            {
                if (a >= 0 && a <= matrix.GetUpperBound(0))
                {
                    if (b >= 0 && b <= matrix.GetUpperBound(1))
                    {
                        if (matrix[ a, b] > 0)
                        {
                            t.value += 1;
                            t.sum += matrix[a,b];
                        }

                    }
                }
            }
        }

    }

你需要的一个类:

        class Target
    {
        public int value;
        public int sum;
        public int x;
        public int y;
    }

你的新问题,有跨行不递减的值,很容易解决。

Observe that the left column contains the highest numbers. Therefore, any optimal solution must first reduce this column to zero. Thus, we can perform a 1-D bombing run over this column, reducing every element in it to zero. We let the bombs fall on the second column so they do maximum damage. There are many posts here dealing with the 1D case, I think, so I feel safe in skipping that case. (If you want me to describe it, I can.). Because of the decreasing property, the three leftmost columns will all be reduced to zero. But, we will provably use a minimum number of bombs here because the left column must be zeroed.

现在,一旦左边的列归零,我们只要剪掉最左边的三列现在归零,然后对现在化简的矩阵重复这一步骤。这必须给我们一个最优的解决方案,因为在每个阶段我们使用可证明的最少数量的炸弹。

这可以用深度为O(3^(n))的树来求解。其中n是所有平方和。

首先考虑用O(9^n)树来解决问题是很简单的,只需考虑所有可能的爆炸位置。有关示例,请参阅Alfe的实现。

接下来我们意识到,我们可以从下往上轰炸,仍然得到一个最小的轰炸模式。

Start from the bottom left corner. Bomb it to oblivion with the only plays that make sense (up and to the right). Move one square to the right. While the target has a value greater than zero, consider each of the 2 plays that make sense (straight up or up and to the right), reduce the value of the target by one, and make a new branch for each possibility. Move another to the right. While the target has a value greater than zero, consider each of the 3 plays that make sense (up left, up, and up right), reduce the value of the target by one, and make a new branch for each possibility. Repeat steps 5 and 6 until the row is eliminated. Move up a row and repeat steps 1 to 7 until the puzzle is solved.

这个算法是正确的,因为

有必要在某一时刻完成每一行。 完成一行总是需要一个游戏,一个在上面,一个在下面,或者在这一行内。 选择在未清除的最低行之上的玩法总是比选择在该行之上或该行之下的玩法更好。

在实践中,这个算法通常会比它的理论最大值做得更好,因为它会定期轰炸邻居并减少搜索的大小。如果我们假设每次轰炸都会减少4个额外目标的价值,那么我们的算法将运行在O(3^(n/4))或大约O(1.3^n)。

Because this algorithm is still exponential, it would be wise to limit the depth of the search. We might limit the number of branches allowed to some number, X, and once we are this deep we force the algorithm to choose the best path it has identified so far (the one that has the minimum total board sum in one of its terminal leaves). Then our algorithm is guaranteed to run in O(3^X) time, but it is not guaranteed to get the correct answer. However, we can always increase X and test empirically if the trade off between increased computation and better answers is worthwhile.