我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

我也有28招。我使用了两个测试来确定最佳下一步:第一个是产生最小棋盘和的一步。其次,对于相等的和,产生最大密度的移动,定义为:

number-of-zeros / number-of-groups-of-zeros

我是哈斯克尔。“解决板”显示引擎的解决方案。你可以通过输入“main”来玩游戏,然后输入目标点,“best”作为推荐,或者“quit”退出。

输出: *主>解决板 [(4, 4),(3、6),(3),(2,2),(2,2),(4、6)(4、6),(2,6),(2),(4,2)(2,6),(3),(4,3)(2,6)(4,2)(4、6)(4、6),(3、6),(2,6)(2,6)(2、4)(2、4)(2,6),(6),(4,2)(4,2)(4,2)(4,2)]

import Data.List
import Data.List.Split
import Data.Ord
import Data.Function(on)

board = [2,3,4,7,1,
         1,5,2,6,2,
         4,3,4,2,1,
         2,1,2,4,1,
         3,1,3,4,1,
         2,1,4,3,2,
         6,9,1,6,4]

n = 5
m = 7

updateBoard board pt =
  let x = fst pt
      y = snd pt
      precedingLines = replicate ((y-2) * n) 0
      bomb = concat $ replicate (if y == 1
                                    then 2
                                    else min 3 (m+2-y)) (replicate (x-2) 0 
                                                         ++ (if x == 1 
                                                                then [1,1]
                                                                else replicate (min 3 (n+2-x)) 1)
                                                                ++ replicate (n-(x+1)) 0)
  in zipWith (\a b -> max 0 (a-b)) board (precedingLines ++ bomb ++ repeat 0)

showBoard board = 
  let top = "   " ++ (concat $ map (\x -> show x ++ ".") [1..n]) ++ "\n"
      chunks = chunksOf n board
  in putStrLn (top ++ showBoard' chunks "" 1)
       where showBoard' []     str count = str
             showBoard' (x:xs) str count =
               showBoard' xs (str ++ show count ++ "." ++ show x ++ "\n") (count+1)

instances _ [] = 0
instances x (y:ys)
  | x == y    = 1 + instances x ys
  | otherwise = instances x ys

density a = 
  let numZeros = instances 0 a
      groupsOfZeros = filter (\x -> head x == 0) (group a)
  in if null groupsOfZeros then 0 else numZeros / fromIntegral (length groupsOfZeros)

boardDensity board = sum (map density (chunksOf n board))

moves = [(a,b) | a <- [2..n-1], b <- [2..m-1]]               

bestMove board = 
  let lowestSumMoves = take 1 $ groupBy ((==) `on` snd) 
                              $ sortBy (comparing snd) (map (\x -> (x, sum $ updateBoard board x)) (moves))
  in if null lowestSumMoves
        then (0,0)
        else let lowestSumMoves' = map (\x -> fst x) (head lowestSumMoves) 
             in fst $ head $ reverse $ sortBy (comparing snd) 
                (map (\x -> (x, boardDensity $ updateBoard board x)) (lowestSumMoves'))   

solve board = solve' board [] where
  solve' board result
    | sum board == 0 = result
    | otherwise      = 
        let best = bestMove board 
        in solve' (updateBoard board best) (result ++ [best])

main :: IO ()
main = mainLoop board where
  mainLoop board = do 
    putStrLn ""
    showBoard board
    putStr "Pt: "
    a <- getLine
    case a of 
      "quit"    -> do putStrLn ""
                      return ()
      "best"    -> do putStrLn (show $ bestMove board)
                      mainLoop board
      otherwise -> let ws = splitOn "," a
                       pt = (read (head ws), read (last ws))
                   in do mainLoop (updateBoard board pt)

其他回答

这是另一个想法:

让我们先给黑板上的每个空格分配一个权重,计算在那里扔炸弹会减少多少数字。如果这个空间有一个非零数,它就得到一个点,如果它的相邻空间有一个非零数,它就得到一个额外的点。如果这是一个1000 * 1000的网格,我们为这100万个空间中的每一个都分配了权重。

然后根据权重对列表中的空格进行排序,并轰炸权重最高的空格。可以这么说,这是我们最大的收获。

在此之后,更新每个空间的重量是受炸弹的影响。这是你轰炸的空间,和它相邻的空间,以及它们相邻的空间。换句话说,任何空间的价值都可能因为爆炸而减少为零,或者相邻空间的价值减少为零。

然后,根据权重重新排序列表空间。由于轰炸只改变了一小部分空间的权重,因此不需要使用整个列表,只需在列表中移动这些空间。

轰炸新的最高权重空间,并重复上述步骤。

这保证了每次轰炸都能减少尽可能多的空格(基本上,它会击中尽可能少的已经为零的空格),所以这是最优的,除非它们的权重是相同的。所以你可能需要做一些回溯跟踪,当有一个平局的顶部重量。不过,只有最高重量的领带重要,其他领带不重要,所以希望没有太多的回溯。

Edit: Mysticial's counterexample below demonstrates that in fact this isn't guaranteed to be optimal, regardless of ties in weights. In some cases reducing the weight as much as possible in a given step actually leaves the remaining bombs too spread out to achieve as high a cummulative reduction after the second step as you could have with a slightly less greedy choice in the first step. I was somewhat mislead by the notion that the results are insensitive to the order of bombings. They are insensitive to the order in that you could take any series of bombings and replay them from the start in a different order and end up with the same resulting board. But it doesn't follow from that that you can consider each bombing independently. Or, at least, each bombing must be considered in a way that takes into account how well it sets up the board for subsequent bombings.

这是一个广度搜索,通过这个“迷宫”的位置寻找最短路径(一系列轰炸)。不,我不能证明没有更快的算法,抱歉。

#!/usr/bin/env python

M = ((1,2,3,4),
     (2,3,4,5),
     (5,2,7,4),
     (2,3,5,8))

def eachPossibleMove(m):
  for y in range(1, len(m)-1):
    for x in range(1, len(m[0])-1):
      if (0 == m[y-1][x-1] == m[y-1][x] == m[y-1][x+1] ==
               m[y][x-1]   == m[y][x]   == m[y][x+1] ==
               m[y+1][x-1] == m[y+1][x] == m[y+1][x+1]):
        continue
      yield x, y

def bomb(m, (mx, my)):
  return tuple(tuple(max(0, m[y][x]-1)
      if mx-1 <= x <= mx+1 and my-1 <= y <= my+1
      else m[y][x]
      for x in range(len(m[y])))
    for y in range(len(m)))

def findFirstSolution(m, path=[]):
#  print path
#  print m
  if sum(map(sum, m)) == 0:  # empty?
    return path
  for move in eachPossibleMove(m):
    return findFirstSolution(bomb(m, move), path + [ move ])

def findShortestSolution(m):
  black = {}
  nextWhite = { m: [] }
  while nextWhite:
    white = nextWhite
    nextWhite = {}
    for position, path in white.iteritems():
      for move in eachPossibleMove(position):
        nextPosition = bomb(position, move)
        nextPath = path + [ move ]
        if sum(map(sum, nextPosition)) == 0:  # empty?
          return nextPath
        if nextPosition in black or nextPosition in white:
          continue  # ignore, found that one before
        nextWhite[nextPosition] = nextPath

def main(argv):
  if argv[1] == 'first':
    print findFirstSolution(M)
  elif argv[1] == 'shortest':
    print findShortestSolution(M)
  else:
    raise NotImplementedError(argv[1])

if __name__ == '__main__':
  import sys
  sys.exit(main(sys.argv))

在这里,线性规划方法似乎非常有用。

设Pm x n为包含位置值的矩阵:

现在定义一个炸弹矩阵B(x, y)m x n,其中1≤x≤m, 1≤y≤n如下所示

以这样一种方式

例如:

所以我们正在寻找一个矩阵Bm x n = [bij]

可以定义为炸弹矩阵的和: (qij将是我们在pij位置投放的炸弹数量) pij - bij≤0(为了更简洁,我们称之为P - B≤0)

而且,B应该使和最小。

我们也可以把B写成前面的丑矩阵:

由于P - B≤0(即P≤B),我们得到了如下线性不等式系统:

qmn x1定义为

PMN x 1定义为

我们可以说我们有一个方程组是smnxmn这个矩阵要倒转来解方程组。我自己没有扩展它,但我相信在代码中应该很容易做到。

现在,我们有一个最小的问题可以表述为

I believe it is something easy, almost trivial to be solved with something like the simplex algorithm (there is this rather cool doc about it). However, I do know almost no linear programming (I will take a course about it on Coursera but it is just in the future...), I had some headaches trying to understand it and I have a huge freelance job to finish so I just give up here. It can be that I did something wrong at some point, or that it can't go any further, but I believe this path can eventually lead to the solution. Anyway, I am anxious for your feedback.

(特别感谢这个神奇的网站从LaTeX表达式创建图片)

我想不出一个计算实际数字的方法除非用我最好的启发式方法计算轰炸行动并希望得到一个合理的结果。

So my method is to compute a bombing efficiency metric for each cell, bomb the cell with the highest value, .... iterate the process until I've flattened everything. Some have advocated using simple potential damage (i.e. score from 0 to 9) as a metric, but that falls short by pounding high value cells and not making use of damage overlap. I'd calculate cell value - sum of all neighbouring cells, reset any positive to 0 and use the absolute value of anything negative. Intuitively this metric should make a selection that help maximise damage overlap on cells with high counts instead of pounding those directly.

下面的代码在28个炸弹中达到了测试场的完全破坏(注意,使用潜在伤害作为度量,结果是31!)

using System;
using System.Collections.Generic;
using System.Linq;

namespace StackOverflow
{
  internal class Program
  {
    // store the battle field as flat array + dimensions
    private static int _width = 5;
    private static int _length = 7;
    private static int[] _field = new int[] {
        2, 3, 4, 7, 1,
        1, 5, 2, 6, 2,
        4, 3, 4, 2, 1,
        2, 1, 2, 4, 1,
        3, 1, 3, 4, 1,
        2, 1, 4, 3, 2,
        6, 9, 1, 6, 4
    };
    // this will store the devastation metric
    private static int[] _metric;

    // do the work
    private static void Main(string[] args)
    {
        int count = 0;

        while (_field.Sum() > 0)
        {
            Console.Out.WriteLine("Round {0}:", ++count);
            GetBlastPotential();
            int cell_to_bomb = FindBestBombingSite();
            PrintField(cell_to_bomb);
            Bomb(cell_to_bomb);
        }
        Console.Out.WriteLine("Done in {0} rounds", count);
    } 

    // convert 2D position to 1D index
    private static int Get1DCoord(int x, int y)
    {
        if ((x < 0) || (y < 0) || (x >= _width) || (y >= _length)) return -1;
        else
        {
            return (y * _width) + x;
        }
    }

    // Convert 1D index to 2D position
    private static void Get2DCoord(int n, out int x, out int y)
    {
        if ((n < 0) || (n >= _field.Length))
        {
            x = -1;
            y = -1;
        }
        else
        {
            x = n % _width;
            y = n / _width;
        }
    }

    // Compute a list of 1D indices for a cell neighbours
    private static List<int> GetNeighbours(int cell)
    {
        List<int> neighbours = new List<int>();
        int x, y;
        Get2DCoord(cell, out x, out y);
        if ((x >= 0) && (y >= 0))
        {
            List<int> tmp = new List<int>();
            tmp.Add(Get1DCoord(x - 1, y - 1));
            tmp.Add(Get1DCoord(x - 1, y));
            tmp.Add(Get1DCoord(x - 1, y + 1));
            tmp.Add(Get1DCoord(x, y - 1));
            tmp.Add(Get1DCoord(x, y + 1));
            tmp.Add(Get1DCoord(x + 1, y - 1));
            tmp.Add(Get1DCoord(x + 1, y));
            tmp.Add(Get1DCoord(x + 1, y + 1));

            // eliminate invalid coords - i.e. stuff past the edges
            foreach (int c in tmp) if (c >= 0) neighbours.Add(c);
        }
        return neighbours;
    }

    // Compute the devastation metric for each cell
    // Represent the Value of the cell minus the sum of all its neighbours
    private static void GetBlastPotential()
    {
        _metric = new int[_field.Length];
        for (int i = 0; i < _field.Length; i++)
        {
            _metric[i] = _field[i];
            List<int> neighbours = GetNeighbours(i);
            if (neighbours != null)
            {
                foreach (int j in neighbours) _metric[i] -= _field[j];
            }
        }
        for (int i = 0; i < _metric.Length; i++)
        {
            _metric[i] = (_metric[i] < 0) ? Math.Abs(_metric[i]) : 0;
        }
    }

    //// Compute the simple expected damage a bomb would score
    //private static void GetBlastPotential()
    //{
    //    _metric = new int[_field.Length];
    //    for (int i = 0; i < _field.Length; i++)
    //    {
    //        _metric[i] = (_field[i] > 0) ? 1 : 0;
    //        List<int> neighbours = GetNeighbours(i);
    //        if (neighbours != null)
    //        {
    //            foreach (int j in neighbours) _metric[i] += (_field[j] > 0) ? 1 : 0;
    //        }
    //    }            
    //}

    // Update the battle field upon dropping a bomb
    private static void Bomb(int cell)
    {
        List<int> neighbours = GetNeighbours(cell);
        foreach (int i in neighbours)
        {
            if (_field[i] > 0) _field[i]--;
        }
    }

    // Find the best bombing site - just return index of local maxima
    private static int FindBestBombingSite()
    {
        int max_idx = 0;
        int max_val = int.MinValue;
        for (int i = 0; i < _metric.Length; i++)
        {
            if (_metric[i] > max_val)
            {
                max_val = _metric[i];
                max_idx = i;
            }
        }
        return max_idx;
    }

    // Display the battle field on the console
    private static void PrintField(int cell)
    {
        for (int x = 0; x < _width; x++)
        {
            for (int y = 0; y < _length; y++)
            {
                int c = Get1DCoord(x, y);
                if (c == cell)
                    Console.Out.Write(string.Format("[{0}]", _field[c]).PadLeft(4));
                else
                    Console.Out.Write(string.Format(" {0} ", _field[c]).PadLeft(4));
            }
            Console.Out.Write(" || ");
            for (int y = 0; y < _length; y++)
            {
                int c = Get1DCoord(x, y);
                if (c == cell)
                    Console.Out.Write(string.Format("[{0}]", _metric[c]).PadLeft(4));
                else
                    Console.Out.Write(string.Format(" {0} ", _metric[c]).PadLeft(4));
            }
            Console.Out.WriteLine();
        }
        Console.Out.WriteLine();
    }           
  }
}

产生的轰炸模式输出如下(左边是字段值,右边是度量值)

Round 1:
  2   1   4   2   3   2   6  ||   7  16   8  10   4  18   6
  3   5   3   1   1   1   9  ||  11  18  18  21  17  28   5
  4  [2]  4   2   3   4   1  ||  19 [32] 21  20  17  24  22
  7   6   2   4   4   3   6  ||   8  17  20  14  16  22   8
  1   2   1   1   1   2   4  ||  14  15  14  11  13  16   7

Round 2:
  2   1   4   2   3   2   6  ||   5  13   6   9   4  18   6
  2   4   2   1   1  [1]  9  ||  10  15  17  19  17 [28]  5
  3   2   3   2   3   4   1  ||  16  24  18  17  17  24  22
  6   5   1   4   4   3   6  ||   7  14  19  12  16  22   8
  1   2   1   1   1   2   4  ||  12  12  12  10  13  16   7

Round 3:
  2   1   4   2   2   1   5  ||   5  13   6   7   3  15   5
  2   4   2   1   0   1   8  ||  10  15  17  16  14  20   2
  3  [2]  3   2   2   3   0  ||  16 [24] 18  15  16  21  21
  6   5   1   4   4   3   6  ||   7  14  19  11  14  19   6
  1   2   1   1   1   2   4  ||  12  12  12  10  13  16   7

Round 4:
  2   1   4   2   2   1   5  ||   3  10   4   6   3  15   5
  1   3   1   1   0   1   8  ||   9  12  16  14  14  20   2
  2   2   2   2   2  [3]  0  ||  13  16  15  12  16 [21] 21
  5   4   0   4   4   3   6  ||   6  11  18   9  14  19   6
  1   2   1   1   1   2   4  ||  10   9  10   9  13  16   7

Round 5:
  2   1   4   2   2   1   5  ||   3  10   4   6   2  13   3
  1   3   1   1   0  [0]  7  ||   9  12  16  13  12 [19]  2
  2   2   2   2   1   3   0  ||  13  16  15  10  14  15  17
  5   4   0   4   3   2   5  ||   6  11  18   7  13  17   6
  1   2   1   1   1   2   4  ||  10   9  10   8  11  13   5

Round 6:
  2   1   4   2   1   0   4  ||   3  10   4   5   2  11   2
  1   3   1   1   0   0   6  ||   9  12  16  11   8  13   0
  2   2   2   2   0   2   0  ||  13  16  15   9  14  14  15
  5   4  [0]  4   3   2   5  ||   6  11 [18]  6  11  15   5
  1   2   1   1   1   2   4  ||  10   9  10   8  11  13   5

Round 7:
  2   1   4   2   1   0   4  ||   3  10   4   5   2  11   2
  1   3   1   1   0   0   6  ||   8  10  13   9   7  13   0
  2  [1]  1   1   0   2   0  ||  11 [15] 12   8  12  14  15
  5   3   0   3   3   2   5  ||   3   8  10   3   8  15   5
  1   1   0   0   1   2   4  ||   8   8   7   7   9  13   5

Round 8:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  11   2
  0   2   0   1   0   0   6  ||   7   7  12   7   7  13   0
  1   1   0   1   0   2   0  ||   8   8  10   6  12  14  15
  4   2   0   3   3  [2]  5  ||   2   6   8   2   8 [15]  5
  1   1   0   0   1   2   4  ||   6   6   6   7   9  13   5

Round 9:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  11   2
  0   2   0   1   0   0   6  ||   7   7  12   7   6  12   0
  1   1   0   1   0  [1]  0  ||   8   8  10   5  10 [13] 13
  4   2   0   3   2   2   4  ||   2   6   8   0   6   9   3
  1   1   0   0   0   1   3  ||   6   6   6   5   8  10   4

Round 10:
  2   1   4   2   1   0   4  ||   1   7   2   4   2  10   1
  0   2  [0]  1   0   0   5  ||   7   7 [12]  7   6  11   0
  1   1   0   1   0   1   0  ||   8   8  10   4   8   9  10
  4   2   0   3   1   1   3  ||   2   6   8   0   6   8   3
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 11:
  2   0   3   1   1   0   4  ||   0   6   0   3   0  10   1
  0   1   0   0   0  [0]  5  ||   4   5   5   5   3 [11]  0
  1   0   0   0   0   1   0  ||   6   8   6   4   6   9  10
  4   2   0   3   1   1   3  ||   1   5   6   0   5   8   3
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 12:
  2   0   3   1   0   0   3  ||   0   6   0   2   1   7   1
  0   1   0   0   0   0   4  ||   4   5   5   4   1   7   0
  1   0   0   0   0  [0]  0  ||   6   8   6   4   5  [9]  8
  4   2   0   3   1   1   3  ||   1   5   6   0   4   7   2
  1   1   0   0   0   1   3  ||   6   6   6   4   6   7   2

Round 13:
  2   0   3   1   0   0   3  ||   0   6   0   2   1   6   0
  0   1   0   0   0   0   3  ||   4   5   5   4   1   6   0
  1  [0]  0   0   0   0   0  ||   6  [8]  6   3   3   5   5
  4   2   0   3   0   0   2  ||   1   5   6   0   4   6   2
  1   1   0   0   0   1   3  ||   6   6   6   3   4   4   0

Round 14:
  2   0   3   1   0  [0]  3  ||   0   5   0   2   1  [6]  0
  0   0   0   0   0   0   3  ||   2   5   4   4   1   6   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   5   5
  3   1   0   3   0   0   2  ||   0   4   5   0   4   6   2
  1   1   0   0   0   1   3  ||   4   4   5   3   4   4   0

Round 15:
  2   0   3   1   0   0   2  ||   0   5   0   2   1   4   0
  0   0   0   0   0   0   2  ||   2   5   4   4   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   4   4
  3   1   0   3   0  [0]  2  ||   0   4   5   0   4  [6]  2
  1   1   0   0   0   1   3  ||   4   4   5   3   4   4   0

Round 16:
  2  [0]  3   1   0   0   2  ||   0  [5]  0   2   1   4   0
  0   0   0   0   0   0   2  ||   2   5   4   4   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   3   3
  3   1   0   3   0   0   1  ||   0   4   5   0   3   3   1
  1   1   0   0   0   0   2  ||   4   4   5   3   3   3   0

Round 17:
  1   0   2   1   0   0   2  ||   0   3   0   1   1   4   0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   4   4   4   3   3   3   3
  3   1  [0]  3   0   0   1  ||   0   4  [5]  0   3   3   1
  1   1   0   0   0   0   2  ||   4   4   5   3   3   3   0

Round 18:
  1   0   2   1   0   0   2  ||   0   3   0   1   1   4   0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   3   3   2   2   2   3   3
  3  [0]  0   2   0   0   1  ||   0  [4]  2   0   2   3   1
  1   0   0   0   0   0   2  ||   2   4   2   2   2   3   0

Round 19:
  1   0   2   1   0  [0]  2  ||   0   3   0   1   1  [4]  0
  0   0   0   0   0   0   2  ||   1   3   3   3   1   4   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   3   3
  2   0   0   2   0   0   1  ||   0   2   2   0   2   3   1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 20:
  1  [0]  2   1   0   0   1  ||   0  [3]  0   1   1   2   0
  0   0   0   0   0   0   1  ||   1   3   3   3   1   2   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   2   2
  2   0   0   2   0   0   1  ||   0   2   2   0   2   3   1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 21:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0   0   0   0   0   1  ||   0   1   2   2   1   2   0
  0   0   0   0   0   0   0  ||   2   2   2   2   2   2   2
  2   0   0   2   0  [0]  1  ||   0   2   2   0   2  [3]  1
  0   0   0   0   0   0   2  ||   2   2   2   2   2   3   0

Round 22:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0   0   0   0   0   1  ||   0   1   2   2   1   2   0
 [0]  0   0   0   0   0   0  ||  [2]  2   2   2   2   1   1
  2   0   0   2   0   0   0  ||   0   2   2   0   2   1   1
  0   0   0   0   0   0   1  ||   2   2   2   2   2   1   0

Round 23:
  0   0   1   1   0   0   1  ||   0   1   0   0   1   2   0
  0   0  [0]  0   0   0   1  ||   0   1  [2]  2   1   2   0
  0   0   0   0   0   0   0  ||   1   1   2   2   2   1   1
  1   0   0   2   0   0   0  ||   0   1   2   0   2   1   1
  0   0   0   0   0   0   1  ||   1   1   2   2   2   1   0

Round 24:
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0  [0]  0   0   0   0  ||   1   1  [2]  2   2   1   1
  1   0   0   2   0   0   0  ||   0   1   2   0   2   1   1
  0   0   0   0   0   0   1  ||   1   1   2   2   2   1   0

Round 25:
  0   0   0   0   0  [0]  1  ||   0   0   0   0   0  [2]  0
  0   0   0   0   0   0   1  ||   0   0   0   0   0   2   0
  0   0   0   0   0   0   0  ||   1   1   1   1   1   1   1
  1   0   0   1   0   0   0  ||   0   1   1   0   1   1   1
  0   0   0   0   0   0   1  ||   1   1   1   1   1   1   0

Round 26:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
 [0]  0   0   0   0   0   0  ||  [1]  1   1   1   1   0   0
  1   0   0   1   0   0   0  ||   0   1   1   0   1   1   1
  0   0   0   0   0   0   1  ||   1   1   1   1   1   1   0

Round 27:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0  [0]  0   0   0   0  ||   0   0  [1]  1   1   0   0
  0   0   0   1   0   0   0  ||   0   0   1   0   1   1   1
  0   0   0   0   0   0   1  ||   0   0   1   1   1   1   0

Round 28:
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0   0   0  ||   0   0   0   0   0   0   0
  0   0   0   0   0  [0]  0  ||   0   0   0   0   0  [1]  1
  0   0   0   0   0   0   1  ||   0   0   0   0   0   1   0

Done in 28 rounds

到目前为止,一些答案给出了指数时间,一些涉及动态规划。我怀疑这些是否有必要。

我的解是O(mnS)其中m和n是板子的维度,S是所有整数的和。这个想法相当野蛮:找到每次可以杀死最多的位置,并在0处终止。

对于给定的棋盘,它给出28步棋,并且在每次落子后打印出棋盘。

完整的,不言自明的代码:

import java.util.Arrays;

public class BombMinDrops {

    private static final int[][] BOARD = {{2,3,4,7,1}, {1,5,2,6,2}, {4,3,4,2,1}, {2,1,2,4,1}, {3,1,3,4,1}, {2,1,4,3,2}, {6,9,1,6,4}};
    private static final int ROWS = BOARD.length;
    private static final int COLS = BOARD[0].length;
    private static int remaining = 0;
    private static int dropCount = 0;
    static {
        for (int i = 0; i < ROWS; i++) {
            for (int j = 0; j < COLS; j++) {
                remaining = remaining + BOARD[i][j];
            }
        }
    }

    private static class Point {
        int x, y;
        int kills;

        Point(int x, int y, int kills) {
            this.x = x;
            this.y = y;
            this.kills = kills;
        }

        @Override
        public String toString() {
            return dropCount + "th drop at [" + x + ", " + y + "] , killed " + kills;
        }
    }

    private static int countPossibleKills(int x, int y) {
        int count = 0;
        for (int row = x - 1; row <= x + 1; row++) {
            for (int col = y - 1; col <= y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) count++;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        return count;
    }

    private static void drop(Point here) {
        for (int row = here.x - 1; row <= here.x + 1; row++) {
            for (int col = here.y - 1; col <= here.y + 1; col++) {
                try {
                    if (BOARD[row][col] > 0) BOARD[row][col]--;
                } catch (ArrayIndexOutOfBoundsException ex) {/*ignore*/}
            }
        }

        dropCount++;
        remaining = remaining - here.kills;
        print(here);
    }

    public static void solve() {
        while (remaining > 0) {
            Point dropWithMaxKills = new Point(-1, -1, -1);
            for (int i = 0; i < ROWS; i++) {
                for (int j = 0; j < COLS; j++) {
                    int possibleKills = countPossibleKills(i, j);
                    if (possibleKills > dropWithMaxKills.kills) {
                        dropWithMaxKills = new Point(i, j, possibleKills);
                    }
                }
            }

            drop(dropWithMaxKills);
        }

        System.out.println("Total dropped: " + dropCount);
    }

    private static void print(Point drop) {
        System.out.println(drop.toString());
        for (int[] row : BOARD) {
            System.out.println(Arrays.toString(row));
        }

        System.out.println();
    }

    public static void main(String[] args) {
        solve();
    }

}