我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

蛮力!

我知道它效率不高,但即使你找到了一个更快的算法,你也可以对这个结果进行测试,以了解它有多准确。

使用一些递归,像这样:

void fn(tableState ts, currentlevel cl)
{
  // first check if ts is all zeros yet, if not:
  //
  // do a for loop to go through all cells of ts, 
  // for each cell do a bomb, and then
  // call: 
  // fn(ts, cl + 1);

}

你可以通过缓存来提高效率,如果不同的方法导致相同的结果,你不应该重复相同的步骤。

阐述:

如果轰炸单元格1,3,5的结果与轰炸单元格5,3,1的结果相同,那么,对于这两种情况,您不应该重新执行所有后续步骤,只需1就足够了,您应该将所有表状态存储在某个地方并使用其结果。

表统计信息的散列可以用于快速比较。

其他回答

你可以把这个问题表示成整数规划问题。(这只是解决这个问题的一种可能的方法)

有分:

a b c d
e f g h
i j k l
m n o p

我们可以写出16个方程其中以点f为例

f <= ai + bi + ci + ei + fi + gi + ii + ji + ki   

最小化所有索引的总和和整数解。

解当然是这些指标的和。

这可以通过将所有xi设置为边界0来进一步简化,因此在本例中最终得到4+1方程。

问题是没有解决这类问题的简单算法。我不是这方面的专家,但解决这个问题作为线性规划是NP困难。

蛮力!

我知道它效率不高,但即使你找到了一个更快的算法,你也可以对这个结果进行测试,以了解它有多准确。

使用一些递归,像这样:

void fn(tableState ts, currentlevel cl)
{
  // first check if ts is all zeros yet, if not:
  //
  // do a for loop to go through all cells of ts, 
  // for each cell do a bomb, and then
  // call: 
  // fn(ts, cl + 1);

}

你可以通过缓存来提高效率,如果不同的方法导致相同的结果,你不应该重复相同的步骤。

阐述:

如果轰炸单元格1,3,5的结果与轰炸单元格5,3,1的结果相同,那么,对于这两种情况,您不应该重新执行所有后续步骤,只需1就足够了,您应该将所有表状态存储在某个地方并使用其结果。

表统计信息的散列可以用于快速比较。

我相信为了减少炸弹的数量,你只需要最大化伤害。 要做到这一点,需要检查具有最强力的区域。因此,您首先分析具有3x3核的场,并检查哪里的和更强。还有炸弹…一直这样做,直到场地变平。这个文件的答案是28

var oMatrix = [
[2,3,4,7,1],
[1,5,2,6,2],
[4,3,4,2,1],
[2,1,2,4,1],
[3,1,3,4,1],
[2,1,4,3,2],
[6,9,1,6,4]
]

var nBombs = 0;
do
{
    var bSpacesLeftToBomb = false;
    var nHigh = 0;
    var nCellX = 0;
    var nCellY = 0;
    for(var y = 1 ; y<oMatrix.length-1;y++) 
        for(var x = 1 ; x<oMatrix[y].length-1;x++)  
        {
            var nValue = 0;
            for(var yy = y-1;yy<=y+1;yy++)
                for(var xx = x-1;xx<=x+1;xx++)
                    nValue += oMatrix[yy][xx];

            if(nValue>nHigh)
            {
                nHigh = nValue;
                nCellX = x;
                nCellY = y; 
            }

        }
    if(nHigh>0)
    {
        nBombs++;

        for(var yy = nCellY-1;yy<=nCellY+1;yy++)
        {
            for(var xx = nCellX-1;xx<=nCellX+1;xx++)
            {
                if(oMatrix[yy][xx]<=0)
                    continue;
                oMatrix[yy][xx] = --oMatrix[yy][xx];
            }
        }
        bSpacesLeftToBomb = true;
    }
}
while(bSpacesLeftToBomb);

alert(nBombs+'bombs');

这是一个广度搜索,通过这个“迷宫”的位置寻找最短路径(一系列轰炸)。不,我不能证明没有更快的算法,抱歉。

#!/usr/bin/env python

M = ((1,2,3,4),
     (2,3,4,5),
     (5,2,7,4),
     (2,3,5,8))

def eachPossibleMove(m):
  for y in range(1, len(m)-1):
    for x in range(1, len(m[0])-1):
      if (0 == m[y-1][x-1] == m[y-1][x] == m[y-1][x+1] ==
               m[y][x-1]   == m[y][x]   == m[y][x+1] ==
               m[y+1][x-1] == m[y+1][x] == m[y+1][x+1]):
        continue
      yield x, y

def bomb(m, (mx, my)):
  return tuple(tuple(max(0, m[y][x]-1)
      if mx-1 <= x <= mx+1 and my-1 <= y <= my+1
      else m[y][x]
      for x in range(len(m[y])))
    for y in range(len(m)))

def findFirstSolution(m, path=[]):
#  print path
#  print m
  if sum(map(sum, m)) == 0:  # empty?
    return path
  for move in eachPossibleMove(m):
    return findFirstSolution(bomb(m, move), path + [ move ])

def findShortestSolution(m):
  black = {}
  nextWhite = { m: [] }
  while nextWhite:
    white = nextWhite
    nextWhite = {}
    for position, path in white.iteritems():
      for move in eachPossibleMove(position):
        nextPosition = bomb(position, move)
        nextPath = path + [ move ]
        if sum(map(sum, nextPosition)) == 0:  # empty?
          return nextPath
        if nextPosition in black or nextPosition in white:
          continue  # ignore, found that one before
        nextWhite[nextPosition] = nextPath

def main(argv):
  if argv[1] == 'first':
    print findFirstSolution(M)
  elif argv[1] == 'shortest':
    print findShortestSolution(M)
  else:
    raise NotImplementedError(argv[1])

if __name__ == '__main__':
  import sys
  sys.exit(main(sys.argv))

我也有28招。我使用了两个测试来确定最佳下一步:第一个是产生最小棋盘和的一步。其次,对于相等的和,产生最大密度的移动,定义为:

number-of-zeros / number-of-groups-of-zeros

我是哈斯克尔。“解决板”显示引擎的解决方案。你可以通过输入“main”来玩游戏,然后输入目标点,“best”作为推荐,或者“quit”退出。

输出: *主>解决板 [(4, 4),(3、6),(3),(2,2),(2,2),(4、6)(4、6),(2,6),(2),(4,2)(2,6),(3),(4,3)(2,6)(4,2)(4、6)(4、6),(3、6),(2,6)(2,6)(2、4)(2、4)(2,6),(6),(4,2)(4,2)(4,2)(4,2)]

import Data.List
import Data.List.Split
import Data.Ord
import Data.Function(on)

board = [2,3,4,7,1,
         1,5,2,6,2,
         4,3,4,2,1,
         2,1,2,4,1,
         3,1,3,4,1,
         2,1,4,3,2,
         6,9,1,6,4]

n = 5
m = 7

updateBoard board pt =
  let x = fst pt
      y = snd pt
      precedingLines = replicate ((y-2) * n) 0
      bomb = concat $ replicate (if y == 1
                                    then 2
                                    else min 3 (m+2-y)) (replicate (x-2) 0 
                                                         ++ (if x == 1 
                                                                then [1,1]
                                                                else replicate (min 3 (n+2-x)) 1)
                                                                ++ replicate (n-(x+1)) 0)
  in zipWith (\a b -> max 0 (a-b)) board (precedingLines ++ bomb ++ repeat 0)

showBoard board = 
  let top = "   " ++ (concat $ map (\x -> show x ++ ".") [1..n]) ++ "\n"
      chunks = chunksOf n board
  in putStrLn (top ++ showBoard' chunks "" 1)
       where showBoard' []     str count = str
             showBoard' (x:xs) str count =
               showBoard' xs (str ++ show count ++ "." ++ show x ++ "\n") (count+1)

instances _ [] = 0
instances x (y:ys)
  | x == y    = 1 + instances x ys
  | otherwise = instances x ys

density a = 
  let numZeros = instances 0 a
      groupsOfZeros = filter (\x -> head x == 0) (group a)
  in if null groupsOfZeros then 0 else numZeros / fromIntegral (length groupsOfZeros)

boardDensity board = sum (map density (chunksOf n board))

moves = [(a,b) | a <- [2..n-1], b <- [2..m-1]]               

bestMove board = 
  let lowestSumMoves = take 1 $ groupBy ((==) `on` snd) 
                              $ sortBy (comparing snd) (map (\x -> (x, sum $ updateBoard board x)) (moves))
  in if null lowestSumMoves
        then (0,0)
        else let lowestSumMoves' = map (\x -> fst x) (head lowestSumMoves) 
             in fst $ head $ reverse $ sortBy (comparing snd) 
                (map (\x -> (x, boardDensity $ updateBoard board x)) (lowestSumMoves'))   

solve board = solve' board [] where
  solve' board result
    | sum board == 0 = result
    | otherwise      = 
        let best = bestMove board 
        in solve' (updateBoard board best) (result ++ [best])

main :: IO ()
main = mainLoop board where
  mainLoop board = do 
    putStrLn ""
    showBoard board
    putStr "Pt: "
    a <- getLine
    case a of 
      "quit"    -> do putStrLn ""
                      return ()
      "best"    -> do putStrLn (show $ bestMove board)
                      mainLoop board
      otherwise -> let ws = splitOn "," a
                       pt = (read (head ws), read (last ws))
                   in do mainLoop (updateBoard board pt)